92 @section includes Include Files
93 The data type SymmetricTensor and some related operations, such as trace, symmetrize, deviator, ...
for tensor calculus
95 #include <deal.II/base/symmetric_tensor.h> 98 C++ headers (some basics, standard stuff)
105 TimerOutput: to measure the time spent in certain parts of the code
107 #include <deal.II/base/timer.h> 110 Sacado (from Trilinos, data types, operations, ...)
112 #include <Sacado.hpp> 120 Those headers are related to data types and autodiff, but don
't seem to be needed (nor make a difference) 122 //# include <deal.II/base/numbers.h> 123 //# include <deal.II/differentiation/ad/ad_number_traits.h> 124 //# include <deal.II/differentiation/ad/sacado_number_types.h> 127 According to the basics of deal.ii-programming (see dealii.org and https://www.dealii.org/current/doxygen/deal.II/step_1.html for a start) 129 using namespace dealii; 132 Defining a data type for the Sacado variables (here we simply used the standard types from the deal.ii step-33 tutorial's introduction)
138 @section Ex1 1. example: simple scalar equation
139 1. example: simple scalar equation from deal.ii-tutorial step-33 (see the introduction there to
get a first impression, https:
140 @todo clean up the documentation of the classes
145 std::cout <<
"Scalar Test:" << std::endl;
147 Define the variables used in the computation (inputs/independent variables: a, b; output/result: c; auxiliaries/passive variables: *) as the Sacado-data type
151 Initialize the input variables a and b; This (a,b) = (1,2) will be the point where the derivatives are computed.
152 Compare: y=x² -> (dy/dx)(\@x=1) = 2. We can only compute the derivative numerically at a certain point.
160 Our equation here is very simply. But you can use nested equations and many standard mathematical operations, such as sqrt, pow, sin, ...
162 c = 2*a + std::cos(a*b);
163 double *derivs = &c.fastAccessDx(0);
165 Output the derivatives of c with respect to the two above defined degrees of freedom (dof)
167 std::cout <<
"Derivatives at the point (" << a <<
"," << b <<
")" << std::endl;
168 std::cout <<
"dc/da = " << derivs[0] <<
", dc/db=" << derivs[1] << std::endl;
173 @section Ex2 2. example: Preparation
for the use of Sacado with tensors
174 Here we want to introduce tensors
for the first time. Hence, we limit ourselves to a trivial equation relating the strain tensor \a eps
175 with dim x dim components with the stress tensor \a sigma. Both here used tensors are symmetric, hence we use the SymmetricTensor
class and
176 have to keep some details in mind (see below factor 0.5 related to Voigt-Notation). Don't be scared by the enormous number of repetitive
177 lines of code, everything shown in this example and the following will be handled by the
Sacado_Wrapper with roughly four lines of code.
184 std::cout <<
"Test 2:" << std::endl;
187 First we
set the dimension \a dim: 2D->dim=2; 3D->dim=3 \n This defines the
"size" of the tensors and the number of dofs. \ref Ex2
"Example 2" only works in 3D, whereas the following Ex3 is
set up dimension-independent.
189 const unsigned int dim = 3;
192 Declare our input, auxiliary and output variables as SymmetricTensors consisting of fad_doubles (instead of the standard SymmetricTensor out of doubles)
194 SymmetricTensor<2,dim, fad_double> sigma, eps;
197 Init the strain tensor (the point at which the derivative shall be computed)
207 Now we declare the dofs. The derivative to a tensor requires all components, therefore we
set the components of the strain tensor here one by one as the dofs.
208 Because our tensors are symmetric, we only need 6 components in 3D instead of 9
for a full second order tensor
218 The equation describing the stresses (here just a simple test
case)
223 Let
's output the computed stress tensor. 225 std::cout << sigma << std::endl; 227 The resulting values of \a sigma are fairly boring, due to our simple equation. It is the additional output generated by 228 this, that is interesting here: \n 230 1 [ 1 0 0 0 0 0 ] 4 [ 0 0 0 1 0 0 ] 5 [ 0 0 0 0 1 0 ] 4 [ 0 0 0 1 0 0 ] 2 [ 0 1 0 0 0 0 ] 6 [ 0 0 0 0 0 1 ] 5 [ 0 0 0 0 1 0 ] 6 [ 0 0 0 0 0 1 ] 3 [ 0 0 1 0 0 0 ] \n 231 The numbers 1, 4, 5, 4, ... are the entries in the stress tensor \a sigma. In square brackets we see the derivatives of sigma with respect to all the dofs set previously 232 given in the order we defined them above. Meaning: The first entry in the square brackets corresponds to the 0-th dof set by 233 @code eps[0][0].diff(0,6); @endcode referring to the component (0,0) in the strain tensor \a eps. 235 Computing the derivatives for certain components of the resulting tangent modulus: \n 236 We now access these lists of derivatives (output above in square brackets) for one component of the stress tensor \a sigma at a time. 240 Access the derivatives corresponding to the component (0,0) of the stress tensor \a sigma 242 double *derivs = &sigma[0][0].fastAccessDx(0); 244 The following output will show us the same derivatives that we already saw above, just formatted differently \n 245 output: d_sigma[0][0]/d_eps = 1 , 0 , 0 , 0 , 0 , 0 , 247 std::cout << "d_sigma[0][0]/d_eps = "; 248 for ( unsigned int i=0; i<6; ++i) 249 std::cout << derivs[i] << " , "; 250 std::cout << std::endl; 254 Access the derivatives corresponding to the component (1,2) of the stress tensor \a sigma 256 double *derivs = &sigma[1][2].fastAccessDx(0); 258 output: d_sigma[1][2]/d_eps = 0 , 0 , 0 , 0 , 0 , 1 , 260 std::cout << "d_sigma[1][2]/d_eps = "; 261 for ( unsigned int i=0; i<6; ++i) 262 std::cout << derivs[i] << " , "; 263 std::cout << std::endl; 269 @section Ex3 3. example: Using a slightly more complicated stress equation 271 void sacado_test_3 () 273 std::cout << "Test 3:" << std::endl; 275 const unsigned int dim = 3; 278 Here we also define some constant, for instance the bulk modulus \a kappa and the second Lamè parameter \a mu. 279 We now also define one of our constants as fad_double. By doing this we can use the normal multiplication (see below). 281 double kappa_param = 5; 282 fad_double kappa (kappa_param); 284 The second constant remains as a double just to show the difference. 288 SymmetricTensor<2,dim, fad_double> sigma, eps; 291 To simplify the access to the dofs we define a map that relate the components of our strain tensor to the dof-nbr 293 std::map<unsigned int,std::pair<unsigned int,unsigned int>> std_map_indicies; 296 The point at which the derivative shall be computed: \n 297 As mentioned previously, we will implement this example for 2D and 3D, hence we once have to set up a strain tensor 298 and the derivatives for 3D with 6 independent components ... 319 By using the map and the following pairs, we have to set up the relation between strain components and dofs only once 320 and can use the map to access the entries of the list later, without possibly mixing up indices and creating errors. 321 Please don't be confused, but the dofs in the Wrapper are
set up
322 in a different order that we showed earlier. Earlier: (0,0)-(1,1)-(2,2)-...; Now: (0,0)-(0,1)-(0,2)-...
324 std::pair<unsigned int, unsigned int> tmp_pair;
325 tmp_pair.first=0; tmp_pair.second=0;
326 std_map_indicies[0] = tmp_pair;
328 tmp_pair.first=0; tmp_pair.second=1;
329 std_map_indicies[1] = tmp_pair;
331 tmp_pair.first=0; tmp_pair.second=2;
332 std_map_indicies[2] = tmp_pair;
334 tmp_pair.first=1; tmp_pair.second=1;
335 std_map_indicies[3] = tmp_pair;
337 tmp_pair.first=1; tmp_pair.second=2;
338 std_map_indicies[4] = tmp_pair;
340 tmp_pair.first=2; tmp_pair.second=2;
341 std_map_indicies[5] = tmp_pair;
344 ... and once
for 2D with just 3 independent components.
358 std::pair<unsigned int, unsigned int> tmp_pair;
359 tmp_pair.first=0; tmp_pair.second=0;
360 std_map_indicies[0] = tmp_pair;
362 tmp_pair.first=0; tmp_pair.second=1;
363 std_map_indicies[1] = tmp_pair;
365 tmp_pair.first=1; tmp_pair.second=1;
366 std_map_indicies[2] = tmp_pair;
370 throw std::runtime_error(
"only dim==2 or dim==3 allowed");
374 Instead of calling the *.diff(*) on the components one-by-one we could also use the following
for-loop, so
375 we also use the map to
set the dofs (as we will
do in the Wrapper later).
377 for (
unsigned int x=0; x<((dim==2)?3:6); ++x )
379 unsigned int i=std_map_indicies[x].first;
380 unsigned int j=std_map_indicies[x].second;
381 eps[i][j].diff(x,((dim==2)?3:6));
385 For our slightly more complicated stress equation we need the unit and deviatoric tensors.
386 We can simply define them by writing the values of the already existing deal.ii functions into newly
387 defined SymmetricTensors build from fad_doubles.
389 SymmetricTensor<2,dim, fad_double> stdTensor_I (( unit_symmetric_tensor<dim,fad_double>()) );
390 SymmetricTensor<4,dim, fad_double> stdTensor_Idev ( (deviator_tensor<dim,fad_double>()) );
393 With everything
set and defined, we can compute our stress \a sigma according to:
394 \f[ \sigma = \kappa \cdot trace(\varepsilon) \cdot \boldsymbol{I} + 2 \cdot \mu \cdot \varepsilon^{dev} \f]
395 Here you can see that we can directly multiply the constant and the tensors when kappa is also declared as fad_double
397 sigma = kappa * (trace(eps) * stdTensor_I);
399 We didn
't do the same for mu to once again emphasize the difference between constants as double and as fad_double. \n 400 The remaining code uses a normal double constant. 402 SymmetricTensor<2,dim,fad_double> tmp = deviator<dim,fad_double>(symmetrize<dim,fad_double>(eps)); tmp*=(mu*2); 405 The fairly cumbersome computation is caused by the way the operators are set up for tensors out of fad_doubles. 408 std::cout << "sigma=" << sigma << std::endl; 411 Now we want to actually build our tangent modulus called \a C_Sacado that contains all the derivatives and relates 412 the stress tensor with the strain tensor. \n 413 The fourth-order tensor \a C_Sacado is our final goal, we don't have to compute anything that is related to Sacado with
414 this tensor, so we can
finally return to our standard SymmetricTensor out of doubles. The latter is necessary to use
415 the tangent in the actual FE code.
417 SymmetricTensor<4,dim> C_Sacado;
420 As in \ref Ex2
"example 2" we access the components of the stress tensor one by one. In order to capture all of them we loop over the
421 components i and j of the stress tensor.
423 for (
unsigned int i=0; i<dim; ++i)
424 for (
unsigned int j=0; j<dim; ++j )
426 double *derivs = &sigma[i][j].fastAccessDx(0);
429 To visually ensure that every stress component has in fact all 6 derivatives
for 3D or 3
for 2D, we output the size:
431 std::cout<<
"size: "<<sigma[i][j].size()<<std::endl;
434 We loop over all the dofs. To be able to use
this independent of the chosen dimension \a dim, we use a ternary
operator 435 to decide whether we have to loop over 6 derivatives or just 3.
437 for(
unsigned int x=0;x<((dim==2)?3:6);++x)
439 unsigned int k=std_map_indicies[x].first;
440 unsigned int l=std_map_indicies[x].second;
444 C_Sacado[i][j][k][l] = 0.5*derivs[x];
445 C_Sacado[i][j][l][k] = 0.5*derivs[x];
448 C_Sacado[i][j][k][l] = derivs[x];
454 After resembling the fourth-order tensor, we now have got our tangent saved in \a C_Sacado ready to be used
456 To ensure that Sacado works properly, we can compute the analytical tangent
for comparison
461 Our stress equation in
this example is still simple enough to derive the tangent analytically by hand:
462 \f[ \overset{4}{C_{analy}} = \kappa \cdot \boldsymbol{I} \otimes \boldsymbol{I} + 2 \cdot \mu \cdot \overset{4}{I^{dev}} \f]
464 SymmetricTensor<4,dim> C_analy = kappa_d * outer_product(unit_symmetric_tensor<dim>(), unit_symmetric_tensor<dim>()) + 2* mu_d * deviator_tensor<dim>();
468 We again define our strain tensor \a eps_d (*_d
for standard
double in contrast to
fad_double)
470 SymmetricTensor<2,dim> eps_d;
493 throw std::runtime_error(
"only dim==2 or dim==3 allowed");
496 @todo use boldsymbol
for tensors
498 To output the stress tensor we first have to compute it. We
do this here via
499 \f[ \sigma = \overset{4}{C_{analy}} : \varepsilon \f]
500 The output exactly matched the result obtained with Sacado.
501 @note Checking the Sacado stress tensor against an analytically computed or otherwise determined stress tensor is absolutely no way to check whether
502 the tangent computed via Sacado is correct. When we compute the stress tensor with Sacado and
for example mix up a + and - sign,
this might not matter
503 at all
if the number that is added or subtracted is small. However,
for the tangent
this nasty sign can be very critical. Just keep in mind: the
504 tangent has 81 components and the stress tensor just 9, so how does one want to verify 81 variables by comparing 9?
507 std::cout <<
"sigma_analy: " << (C_analy*eps_d) << std::endl;
510 That
's the reason we compare all the entries in the Sacado and the analytical tensor one by one 512 for (unsigned int i=0; i<dim; ++i) 513 for ( unsigned int j=0; j<dim; ++j) 514 for ( unsigned int k=0; k<dim; ++k) 515 for ( unsigned int l=0; l<dim; ++l) 516 std::cout << "C_analy["<<i<<"]["<<j<<"]["<<k<<"]["<<l<<"] = " << C_analy[i][j][k][l] << " vs C_Sacado: " << C_Sacado[i][j][k][l] << std::endl; 520 To simplify the comparison we compute a scalar error as the sum of the absolute differences of each component 522 double error_Sacado_vs_analy=0; 523 for (unsigned int i=0; i<dim; ++i) 524 for ( unsigned int j=0; j<dim; ++j) 525 for ( unsigned int k=0; k<dim; ++k) 526 for ( unsigned int l=0; l<dim; ++l) 527 error_Sacado_vs_analy += std::fabs(C_Sacado[i][j][k][l] - C_analy[i][j][k][l]); 531 As desired: The numerical error is zero (0 in double precision) and the tensor components are equal 533 std::cout << "numerical error: " << error_Sacado_vs_analy << std::endl; 538 @section Ex3B 3B. Example: Using the wrapper for Ex3 540 void sacado_test_3B () 542 std::cout << "Test 3B:" << std::endl; 543 const unsigned int dim=3; 546 The following declarations are usually input arguments. So you receive the strain tensor and the constants out of doubles. 548 SymmetricTensor<2,dim> eps_d; 561 Now we start working with Sacado: \n 562 When we use the index notation to compute e.g. our stress we do not need to declare our constants (here kappa, mu) as 565 We declare our strain tensor as the special data type Sacado_Wrapper::SymTensor from the file "Sacado_Wrapper.h" 566 where this data type was derived from the SymmetricTensor<2,dim,fad_double>. 568 Sacado_Wrapper::SymTensor<dim> eps; 571 Next we initialize our Sacado strain tensor with the values of the inputed double strain tensor: 576 We define all the entries in the symmetric tensor \a eps as the dofs. So we can later derive any variable 577 with respect to the strain tensor \a eps. 578 @note Keep the order first declare \a eps, then initialise it and afterwards set it as dofs 584 Now we declare our output and auxiliary variables as Sacado-Tensors. 586 SymmetricTensor<2,dim,fad_double> sigma; 588 SymmetricTensor<2,dim, fad_double> stdTensor_I (( unit_symmetric_tensor<dim,fad_double>()) ); 591 Our stress equation is now computed in index notation to simplify the use of the constants and 592 especially the use of the \a deviator. 594 for ( unsigned int i=0; i<dim; ++i) 595 for ( unsigned int j=0; j<dim; ++j ) 596 sigma[i][j] = kappa * trace(eps) * stdTensor_I[i][j] + 2. * mu * deviator(eps)[i][j]; 599 Finally we declare our desired tangent as the fourth order tensor \a C_Sacado and compute the tangent via 600 the command \a get_tangent. 602 SymmetricTensor<4,dim> C_Sacado; 603 eps.get_tangent(C_Sacado, sigma); 606 We could again compare the herein computed tangent with the analytical tangent from Ex2, but as before 607 the results are fairly boring, because Sacado hits the analytical tangent exactly --- no surprise for such 610 And that's it. By
using the Sacado_wrapper we can achieve everything from Ex2 (besides the equations)
611 with just four lines of code namely:
614 - eps.get_tangent(*);
620 @section Ex4 4. Example: Computing derivatives with respect to a tensor and a scalar
624 std::cout <<
"Test 4:" << std::endl;
625 const unsigned int dim=3;
628 The following declarations are usually input arguments. So you receive the strain tensor \q eps_d,
629 the damage variable \a phi and the constants \a kappa and \a mu out of doubles.
631 SymmetricTensor<2,dim> eps_d;
643 We don
't need these constants in the current example. 648 We set up our strain tensor as in Ex3B. 650 Sacado_Wrapper::SymTensor<dim> eps; 651 Sacado_Wrapper::SW_double<dim> phi; 654 Initialize the strain tensor and the damage variable 660 Set the dofs, where the argument sets the total nbr of dofs (3 or 6 for the sym. tensor and 1 for the double) 662 // eps.set_dofs(eps.n_independent_components+1/*an additional dof for phi*/); 665 In order to also compute derivatives with respect to the scalar \a phi, we add this scalar to our list 666 of derivatives. Because we have already defined 3 or 6 dofs our additional dof will be placed at the end 667 of this list. We set this up with the member variable start_index ... 669 // phi.start_index=eps.n_independent_components; 671 and again using the input argument representing the total number of dofs 673 // phi.set_dofs(eps.n_independent_components+1); 676 All of the above 3 lines of code are automatically done by the DoFs_summary class. So, to 677 set our dofs we just create an instance and call set_dofs with our variables containing the desired dofs. 679 Sacado_Wrapper::DoFs_summary<dim> DoFs_summary; 680 DoFs_summary.set_dofs(eps, phi); 684 Compute the stress tensor and damage variable \a d (here we just use some arbitrary equations for testing): \n 685 Let us first declare our output (and auxiliary) variables as Sacado data types. 687 SymmetricTensor<2,dim,fad_double> sigma; 690 @todo It would be nice to use the data types from the Sacado_Wrapper for all the Sacado variables. But 691 somehow the operators (multiply*, ...) seem to cause conflicts again. 693 The actual computation in the following scope uses the exact same equation as your normal computation e. g. via the data type double. 694 Hence, you could either directly compute your stress, etc. via the Sacado variables or you define 695 template functions that contain your equations and are either called templated with double or fad_double. 696 When using the first option, please consider the computation time that is generally higher for a computation 697 with fad_double than with normal doubles (own experience in a special case: slower by factor 30). 698 The second option with templates does not suffer these issues. 701 d = phi*phi + 25 + trace(eps) + eps.norm(); 702 std::cout << "d=" << d << std::endl; 704 for ( unsigned int i=0; i<dim; ++i) 705 for ( unsigned int j=0; j<dim; ++j ) 706 sigma[i][j] = phi * d * eps[i][j]; 708 ToDo: strangely when phi is a fad_double then the multiplication phi * eps works directly without 709 having to use the index notation 711 std::cout << "sigma=" << sigma << std::endl << std::endl; 717 d_sigma / d_eps: SymmetricTensor with respect to SymmetricTensor 719 SymmetricTensor<4,dim> C_Sacado; 720 eps.get_tangent(C_Sacado, sigma); 721 std::cout << "C_Sacado=" << C_Sacado << std::endl; 724 Compute the analytical tangent: 726 SymmetricTensor<4,dim> C_analy; 727 C_analy = ( std::pow(phi_d, 3) + 25*phi_d + phi_d*trace(eps_d) + phi_d*eps_d.norm() ) * identity_tensor<dim>() 728 + phi_d * outer_product( eps_d, unit_symmetric_tensor<dim>()) 729 + phi_d * outer_product( eps_d, eps_d ) * 1./eps_d.norm(); 731 @note Be aware of the difference between \f[ eps_d \otimes \boldsymbol{1} \text{ and } \boldsymbol{1} \otimes eps_d \f] 734 std::cout << "C_analy =" << C_analy << std::endl; 737 To simplify the comparison we compute a scalar error as the sum of the absolute differences of each component 739 double error_Sacado_vs_analy=0; 740 for (unsigned int i=0; i<dim; ++i) 741 for ( unsigned int j=0; j<dim; ++j) 742 for ( unsigned int k=0; k<dim; ++k) 743 for ( unsigned int l=0; l<dim; ++l) 744 error_Sacado_vs_analy += std::fabs(C_Sacado[i][j][k][l] - C_analy[i][j][k][l]); 745 std::cout << "numerical error: " << error_Sacado_vs_analy << std::endl << std::endl; 748 d_d / d_eps: double with respect to SymmetricTensor 750 SymmetricTensor<2,dim> d_d_d_eps; 751 eps.get_tangent(d_d_d_eps, d); 752 std::cout << "d_d_d_eps =" << d_d_d_eps << std::endl; 753 SymmetricTensor<2,dim> d_d_d_eps_analy; 754 d_d_d_eps_analy = unit_symmetric_tensor<dim>() + eps_d / eps_d.norm(); 755 std::cout << "d_d_d_eps_analy=" << d_d_d_eps_analy << std::endl << std::endl; 758 d_sigma / d_phi: SymmetricTensor with respect to double 760 SymmetricTensor<2,dim> d_sigma_d_phi; 761 phi.get_tangent(d_sigma_d_phi, sigma); 762 std::cout << "d_sigma_d_phi =" << d_sigma_d_phi << std::endl; 763 SymmetricTensor<2,dim> d_sigma_d_phi_analy; 764 d_sigma_d_phi_analy = ( phi_d*phi_d + 25 + trace(eps_d) + eps_d.norm() + 2 * phi_d*phi_d ) * eps_d; 765 std::cout << "d_sigma_d_phi_analy=" << d_sigma_d_phi_analy << std::endl << std::endl; 768 Retrieve the values stored in \a sigma: 770 SymmetricTensor<2,dim> sigma_d; 771 for ( unsigned int i=0; i<dim; ++i) 772 for ( unsigned int j=0; j<dim; ++j ) 773 sigma_d[i][j] = sigma[i][j].val(); 774 std::cout << "sigma_d = " << sigma_d << std::endl; 777 d_d / d_phi: double with respect to double 780 phi.get_tangent(d_d_d_phi, d); 781 std::cout << "d_d_d_phi=" << d_d_d_phi << std::endl; 784 Retrieve the value stored in d 786 double d_double = d.val(); 789 Taylor-series for point x 790 @todo Maybe add some more text on the linearization 792 double x = phi_d + 0.05; 793 std::cout << "d_lin = d_d_d_phi * (phi_d - x) + d@(phi_d) = " << d_d_d_phi * (x-phi_d) + d_double << std::endl; 794 std::cout << "d@x = " << x*x + 25 + trace(eps_d) + eps_d.norm() << std::endl; 797 And that's it. By
using the Sacado_wrapper we can compute derivatives with respect to
798 a tensor and a scalar at the same time (besides the equations)
799 in essence with just the following lines of code namely:
800 - eps.init(eps_d); phi.init(phi_d);
801 - DoFs_summary.set_dofs(eps, phi);
802 - eps.get_tangent(*);
803 - phi.get_tangent(*);
810 @section Ex5 5. Example: Using a vector-valued equation
814 const unsigned int dim=3;
815 std::cout <<
"Test 5:" << std::endl;
816 Tensor<1,dim,fad_double> c;
818 unsigned int n_dofs=2;
823 c is now a vector with three components
830 Access to the derivatives works as before.
832 for(
unsigned int i=0;i<dim;++i)
835 for(
unsigned int j=0;j<n_dofs;++j)
837 std::cout <<
"Derivatives at the point (" << a <<
"," << b <<
") for " 838 <<i<<
"th component wrt "<<j<<
"th direction "<< std::endl;
839 std::cout <<
"dc_i/dxj = " << derivs.fastAccessDx(j) << std::endl;
847 @section Ex6 6. Example: First and second derivatives - Scalar equation
848 The here shown example was copied from https:
849 and modified to
get a first impression on how we can work with first and second derivatives
853 std::cout <<
"Test 6:" << std::endl;
855 Define the variables used in the computation (inputs: a, b; output: c; auxiliaries: *) as doubles
861 Number of independent variables (scalar a and b)
866 Define another data type containing even more Sacado data types
867 @todo
try to merge the
fad_double data type with
this templated data type
869 typedef Sacado::Fad::DFad<double>
DFadType;
870 Sacado::Fad::DFad<DFadType> afad(num_dofs, 0, a);
871 Sacado::Fad::DFad<DFadType> bfad(num_dofs, 1, b);
872 Sacado::Fad::DFad<DFadType> cfad;
875 Output the variables: We se that the values of \a a and \a b are
set but the derivatives have not yet been fully declared
877 std::cout <<
"afad=" << afad << std::endl;
878 std::cout <<
"bfad=" << bfad << std::endl;
879 std::cout <<
"cfad=" << cfad << std::endl;
882 Now we
set the
"inner" derivatives.
888 Compute
function and derivative with AD
890 cfad = 2*afad + std::cos(afad*bfad);
893 After
this, we output the variables again and see that some additional derivatives have been declared. Furthermore,
894 \a cfad is filled with the values and derivatives
896 std::cout <<
"afad=" << afad << std::endl;
897 std::cout <<
"bfad=" << bfad << std::endl;
898 std::cout <<
"cfad=" << cfad << std::endl;
901 Extract value and derivatives
903 double c_ad = cfad.val().val();
904 double dcda_ad = cfad.dx(0).val();
905 double dcdb_ad = cfad.dx(1).val();
906 double d2cda2_ad = cfad.dx(0).dx(0);
907 double d2cdadb_ad = cfad.dx(0).dx(1);
908 double d2cdbda_ad = cfad.dx(1).dx(0);
909 double d2cdb2_ad = cfad.dx(1).dx(1);
912 Now we can print the actual
double value of c and some of the derivatives:
914 std::cout <<
"c_ad=" << c_ad << std::endl;
915 std::cout <<
"Derivatives at the point (" << a <<
"," << b <<
")" << std::endl;
916 std::cout <<
"dc/da = " << dcda_ad <<
", dc/db=" << dcdb_ad << std::endl;
917 std::cout <<
"d²c/da² = " << d2cda2_ad <<
", d²c/db²=" << d2cdb2_ad << std::endl;
918 std::cout <<
"d²c/dadb = " << d2cdadb_ad <<
", d²c/dbda=" << d2cdbda_ad << std::endl;
923 @section Ex7 7. Example: First and second derivatives - Using tensors (The full story)
927 const unsigned int dim=3;
929 std::cout <<
"Test 7:" << std::endl;
932 Defining the inputs (material parameters, strain tensor)
936 SymmetricTensor<2,dim, double> eps;
947 Here we skip the one-field example and right away show the equations
for a two-field problem
948 with \a eps and \a phi.
953 Setup of the map relating the indices (as before)
955 std::map<unsigned int,std::pair<unsigned int,unsigned int>> std_map_indicies;
957 std::pair<unsigned int, unsigned int> tmp_pair;
958 tmp_pair.first=0; tmp_pair.second=0;
959 std_map_indicies[0] = tmp_pair;
961 tmp_pair.first=0; tmp_pair.second=1;
962 std_map_indicies[1] = tmp_pair;
964 tmp_pair.first=0; tmp_pair.second=2;
965 std_map_indicies[2] = tmp_pair;
967 tmp_pair.first=1; tmp_pair.second=1;
968 std_map_indicies[3] = tmp_pair;
970 tmp_pair.first=1; tmp_pair.second=2;
971 std_map_indicies[4] = tmp_pair;
973 tmp_pair.first=2; tmp_pair.second=2;
974 std_map_indicies[5] = tmp_pair;
977 Number of independent variables (6
for the tensor and 1
for the scalar phi)
979 const unsigned int nbr_dofs = 6+1;
982 Declaring the special data types containing all derivatives
984 typedef Sacado::Fad::DFad<double>
DFadType;
985 SymmetricTensor<2,dim, Sacado::Fad::DFad<DFadType> > eps_fad, eps_fad_squared;
986 Sacado::Fad::DFad<DFadType> phi_fad;
992 for (
unsigned int x=0; x<6; ++x )
994 unsigned int i=std_map_indicies[x].first;
995 unsigned int j=std_map_indicies[x].second;
996 (eps_fad[i][j]).diff( x, nbr_dofs);
997 (eps_fad[i][j]).val() =
fad_double(nbr_dofs, x, eps[i][j]);
1000 phi_fad.diff( 6, nbr_dofs );
1001 phi_fad.val() =
fad_double(nbr_dofs, 6, phi);
1003 std::cout <<
"eps_fad=" << eps_fad << std::endl;
1004 std::cout <<
"phi_fad=" << phi_fad << std::endl;
1007 Compute eps² = eps_ij * eps_jk in index notation
1009 for (
unsigned int i=0; i<dim; ++i)
1010 for (
unsigned int k=0; k<dim; ++k )
1011 for (
unsigned int j=0; j<dim; ++j )
1013 eps_fad_squared[i][k] += eps_fad[i][j] * eps_fad[j][k];
1016 Compute the strain energy density
1018 Sacado::Fad::DFad<DFadType> energy;
1019 energy = lambda/2. * trace(eps_fad)*trace(eps_fad) + mu * trace(eps_fad_squared) + 25 * phi_fad * trace(eps_fad);
1022 Give some insight into the storage of the values and derivatives
1024 std::cout <<
"energy=" << energy << std::endl;
1027 Compute sigma as \f[ \frac{\partial \Psi}{\partial \boldsymbol{\varepsilon}} \f]
1029 SymmetricTensor<2,dim> sigma_Sac;
1030 for (
unsigned int x=0; x<6; ++x )
1032 unsigned int i=std_map_indicies[x].first;
1033 unsigned int j=std_map_indicies[x].second;
1035 sigma_Sac[i][j] = 0.5 * energy.dx(x).val();
1037 sigma_Sac[i][j] = energy.dx(x).val();
1039 std::cout <<
"sigma_Sacado=" << sigma_Sac << std::endl;
1041 double d_energy_d_phi = energy.dx(6).val();
1042 std::cout <<
"d_energy_d_phi=" << d_energy_d_phi << std::endl;
1044 double d2_energy_d_phi_2 = energy.dx(6).dx(6);
1045 std::cout <<
"d2_energy_d_phi_2=" << d2_energy_d_phi_2 << std::endl;
1048 Analytical stress tensor:
1050 SymmetricTensor<2,dim> sigma;
1051 sigma = lambda*trace(eps)*unit_symmetric_tensor<dim>() + 2. * mu * eps + 25 * phi * unit_symmetric_tensor<dim>();
1052 std::cout <<
"analy. sigma=" << sigma << std::endl;
1058 SymmetricTensor<4,dim> C_Sac;
1059 for(
unsigned int x=0;x<6;++x)
1060 for(
unsigned int y=0;y<6;++y)
1062 const unsigned int i=std_map_indicies[y].first;
1063 const unsigned int j=std_map_indicies[y].second;
1064 const unsigned int k=std_map_indicies[x].first;
1065 const unsigned int l=std_map_indicies[x].second;
1067 double deriv = energy.dx(x).dx(y);
1070 C_Sac[i][j][k][l] = 0.25* deriv;
1073 C_Sac[i][j][k][l] = 0.5*deriv;
1074 C_Sac[i][j][l][k] = 0.5*deriv;
1077 C_Sac[i][j][k][l] = deriv;
1083 SymmetricTensor<4,dim> C_analy;
1084 C_analy = lambda * outer_product(unit_symmetric_tensor<dim>(), unit_symmetric_tensor<dim>()) + 2. * mu * identity_tensor<dim>();
1086 double error_Sacado_vs_analy=0;
1087 for (
unsigned int i=0; i<dim; ++i)
1088 for (
unsigned int j=0; j<dim; ++j)
1089 for (
unsigned int k=0; k<dim; ++k)
1090 for (
unsigned int l=0; l<dim; ++l)
1091 error_Sacado_vs_analy += std::fabs(C_Sac[i][j][k][l] - C_analy[i][j][k][l]);
1093 std::cout <<
"Numerical error=" << error_Sacado_vs_analy << std::endl;
1099 @section Ex8 8. Example: First and second derivatives - Using the Wrapper
1104 const unsigned int dim=3;
1106 std::cout <<
"Test 8:" << std::endl;
1109 Defining the inputs (material parameters, strain tensor)
1113 SymmetricTensor<2,dim, double> eps;
1125 Declaring the special data types containing all derivatives
1127 typedef Sacado::Fad::DFad<double>
DFadType;
1130 Declare the variables \a eps_fad and \a phi_fad as the special Wrapper data types
1136 Declare the summary data type relating all the dofs and initialising them too
1142 The variables are outputted to give some insight into the storage of the values (derivatives still trivial).
1144 std::cout <<
"eps_fad=" << eps_fad << std::endl;
1145 std::cout <<
"phi_fad=" << phi_fad << std::endl;
1148 Compute eps² = eps_ij * eps_jk in index notation
1150 SymmetricTensor<2,dim, Sacado::Fad::DFad<DFadType> > eps_fad_squared;
1151 for (
unsigned int i=0; i<dim; ++i)
1152 for (
unsigned int k=0; k<dim; ++k )
1153 for (
unsigned int j=0; j<dim; ++j )
1155 eps_fad_squared[i][k] += eps_fad[i][j] * eps_fad[j][k];
1158 Compute the strain energy density
1160 Sacado::Fad::DFad<DFadType> energy;
1161 energy = lambda/2. * trace(eps_fad)*trace(eps_fad) + mu * trace(eps_fad_squared) + 25 * phi_fad * trace(eps_fad);
1164 The energy is outputted (formatted by hand) to give some insight into the storage of the values and derivatives. \n
1165 energy=399 [ 17.5 32 40 21.5 48 25.5 150 ] \n
1166 [ 17.5 [ 5 0 0 1 0 1 25 ] 32 [ 0 8 0 0 0 0 0 ] 40 [ 0 0 8 0 0 0 0 ] \n
1167 21.5 [ 1 0 0 5 0 1 25 ] 48 [ 0 0 0 0 8 0 0 ] 25.5 [ 1 0 0 1 0 5 25 ] \n
1168 150 [ 25 0 0 25 0 25 0 ] ]
1171 std::cout <<
"energy=" << energy << std::endl;
1174 Compute sigma as \f[ \boldsymbol{\sigma} = \frac{\partial \Psi}{\partial \boldsymbol{\varepsilon}} \f]
1176 SymmetricTensor<2,dim> sigma_Sac;
1177 eps_fad.get_tangent(sigma_Sac, energy);
1178 std::cout <<
"sigma_Sacado=" << sigma_Sac << std::endl;
1180 double d_energy_d_phi;
1182 std::cout <<
"d_energy_d_phi=" << d_energy_d_phi << std::endl;
1186 Analytical stress tensor:
1188 SymmetricTensor<2,dim> sigma;
1189 sigma = lambda*trace(eps)*unit_symmetric_tensor<dim>() + 2. * mu * eps + 25 * phi * unit_symmetric_tensor<dim>();
1190 std::cout <<
"analy. sigma=" << sigma << std::endl;
1194 Sacado stress tangent (or eps curvature) as \f[ \frac{\partial^2 \Psi}{\partial \boldsymbol{\varepsilon}^2} \f]
1196 SymmetricTensor<4,dim> C_Sac;
1197 eps_fad.get_curvature(C_Sac, energy);
1200 Sacado phi curvature as \f[ \frac{\partial^2 \Psi}{\partial \varphi^2} \f]
1202 double d2_energy_d_phi_2;
1204 std::cout <<
"d2_energy_d_phi_2=" << d2_energy_d_phi_2 << std::endl;
1207 Sacado derivatives \f[ \frac{\partial^2 \Psi}{\partial \boldsymbol{\varepsilon} \partial \varphi} \f]
1209 SymmetricTensor<2,dim> d2_energy_d_eps_d_phi;
1210 DoFs_summary.get_curvature(d2_energy_d_eps_d_phi, energy, eps_fad, phi_fad);
1211 std::cout <<
"d2_energy_d_eps_d_phi=" << d2_energy_d_eps_d_phi << std::endl;
1214 Sacado derivatives \f[ \frac{\partial^2 \Psi}{\partial \varphi \partial \boldsymbol{\varepsilon}} \f]
1216 SymmetricTensor<2,dim> d2_energy_d_phi_d_eps;
1217 DoFs_summary.get_curvature(d2_energy_d_phi_d_eps, energy, phi_fad, eps_fad);
1218 std::cout <<
"d2_energy_d_phi_d_eps=" << d2_energy_d_phi_d_eps << std::endl;
1221 When you consider the output: \n
1222 d2_energy_d_eps_d_phi=25 0 0 0 25 0 0 0 25 \n
1223 d2_energy_d_phi_d_eps=25 0 0 0 25 0 0 0 25 \n
1224 in detail you will notice that both second derivatives are identical. This compplies with the Schwarz integrability condition (Symmetry of second derivatives)
1225 (ignoring all limitation and requirements), it holds
1226 \f[ \frac{\partial^2 \Psi}{\partial \boldsymbol{\varepsilon} \partial \varphi} = \frac{\partial^2 \Psi}{\partial \varphi \partial \boldsymbol{\varepsilon}} \f]
1228 Analytical stress tangent
1230 SymmetricTensor<4,dim> C_analy;
1231 C_analy = lambda * outer_product(unit_symmetric_tensor<dim>(), unit_symmetric_tensor<dim>()) + 2. * mu * identity_tensor<dim>();
1234 Compute the error
for the stress tangent
1236 double error_Sacado_vs_analy=0;
1237 for (
unsigned int i=0; i<dim; ++i)
1238 for (
unsigned int j=0; j<dim; ++j)
1239 for (
unsigned int k=0; k<dim; ++k)
1240 for (
unsigned int l=0; l<dim; ++l)
1241 error_Sacado_vs_analy += std::fabs(C_Sac[i][j][k][l] - C_analy[i][j][k][l]);
1242 std::cout <<
"Numerical error=" << error_Sacado_vs_analy << std::endl;
1247 @section Ex9 9. Example: Why we sometimes need the factor of 0.5 in the derivatives and sometimes we don
't 1249 void sacado_test_9 () 1252 const unsigned int dim=3; 1254 std::cout << "Test 9:" << std::endl; 1256 double kappa_param = 5; 1257 fad_double kappa (kappa_param); 1260 SymmetricTensor<2,dim, fad_double> sigma, eps; 1262 std::map<unsigned int,std::pair<unsigned int,unsigned int>> std_map_indicies; 1273 eps[0][0].diff(0,6); 1274 eps[0][1].diff(1,6); 1275 eps[0][2].diff(2,6); 1276 eps[1][1].diff(3,6); 1277 eps[1][2].diff(4,6); 1278 eps[2][2].diff(5,6); 1280 std::pair<unsigned int, unsigned int> tmp_pair; 1281 tmp_pair.first=0; tmp_pair.second=0; 1282 std_map_indicies[0] = tmp_pair; 1284 tmp_pair.first=0; tmp_pair.second=1; 1285 std_map_indicies[1] = tmp_pair; 1287 tmp_pair.first=0; tmp_pair.second=2; 1288 std_map_indicies[2] = tmp_pair; 1290 tmp_pair.first=1; tmp_pair.second=1; 1291 std_map_indicies[3] = tmp_pair; 1293 tmp_pair.first=1; tmp_pair.second=2; 1294 std_map_indicies[4] = tmp_pair; 1296 tmp_pair.first=2; tmp_pair.second=2; 1297 std_map_indicies[5] = tmp_pair; 1299 SymmetricTensor<2,dim, fad_double> stdTensor_I (( unit_symmetric_tensor<dim,fad_double>()) ); 1301 sigma = kappa * (trace(eps) * stdTensor_I); 1302 SymmetricTensor<2,dim,fad_double> tmp = deviator<dim,fad_double>(symmetrize<dim,fad_double>(eps)); tmp*=(mu*2); 1305 std::cout << "sigma=" << sigma << std::endl; 1308 Retrieve the values stored in \a sigma: 1310 SymmetricTensor<2,dim> sigma_d; 1311 for ( unsigned int i=0; i<dim; ++i) 1312 for ( unsigned int j=0; j<dim; ++j ) 1313 sigma_d[i][j] = sigma[i][j].val(); 1315 SymmetricTensor<4,dim> C_Sacado; 1317 for ( unsigned int i=0; i<dim; ++i) 1318 for ( unsigned int j=0; j<dim; ++j ) 1320 double *derivs = &sigma[i][j].fastAccessDx(0); // Access the derivatives of the (i,j)-th component of \a sigma 1322 for(unsigned int x=0;x<((dim==2)?3:6);++x) 1324 unsigned int k=std_map_indicies[x].first; 1325 unsigned int l=std_map_indicies[x].second; 1327 if(k!=l)/*Compare to Voigt notation since only SymmetricTensor instead of Tensor*/ 1329 C_Sacado[i][j][k][l] = 0.5*derivs[x]; 1330 C_Sacado[i][j][l][k] = 0.5*derivs[x]; 1333 C_Sacado[i][j][k][l] = derivs[x]; 1337 SymmetricTensor<2,dim> eps_d; 1346 SymmetricTensor<2,dim> stress_from_tangent = C_Sacado*eps_d; 1348 std::cout << "C_Sacado*eps_d=" << stress_from_tangent << std::endl; 1349 std::cout << "sigma= " << sigma_d << std::endl; 1352 @todo Add the link to the ac.nz site 1354 As you can see we obtain the correct stress tensor only by using the factor 0.5 onto the off-diagonal elements of the symmetric tensor. \n 1355 @note So, why do we need the factor 0.5 then? (based on [homepages.engineering.auckland.ac.nz ...])\n 1356 When using symmetric tensor one has to be aware of the definition of the independent variables. In 3d those are the 1357 following 6 components: \n 1361 - \f$ \overline{A_{12}} \f$ 1362 - \f$ \overline{A_{13}} \f$ 1363 - \f$ \overline{A_{23}} \f$ \n 1364 Here the overlined components denote the averaged values, such that 1365 - \f$ \overline{A_{12}} = 0.5 \cdot [ A_{12} + A_{21} ] = A_{12} = A_{21} \f$ 1367 This looks rather boring, because the averaged value of the two identical components (symmetry) is identical to the components. 1368 But (and that is a crucial BUT), this only holds for the values NOT the derivatives. 1369 The derivative of a function \f$ \Phi \f$ with respect to a symmetric tensor \a A is 1370 \f[ \frac{\partial \Phi}{\partial \overline{A_{12}}} = \frac{\partial \Phi}{\partial A_{12}} \cdot \frac{\partial A_{12}}{\partial \overline{A_{12}}} 1371 + \frac{\partial \Phi}{\partial A_{21}} \cdot \frac{\partial A_{21}}{\partial \overline{A_{21}}} 1372 = \frac{\partial \Phi}{\partial A_{12}} + \frac{\partial \Phi}{\partial A_{21}} 1373 = 2 \cdot \frac{\partial \Phi}{\partial A_{12}} \f] 1374 Note how the derivatives with respect to the actual tensor components (here 12 and 21) are identical. \n 1375 However, our derivatives (computed via Sacado) were calculated with respect to the actually independent 1376 variables (overlined). Still, in the tensor with the derivatives we want the derivatives with respect to the normal components (not overlined). \n 1378 When you compute derivatives with respect to a symmetric tensor, you have to scale the off-diagonal elements by 0.5 to account for the fact that you actually work with 1379 the averaged values. \n 1380 As a consequence, we use the factor 0.5 for all off-diagonal components of derivatives with respect to symmetric tensors. For second derivatives with respect to 1381 symmetric tensors the factors 0.5 and 0.25 come into play. 1387 @note Here we template <dim,Number> for a function "on the same level". 1388 If you template a member function with <Number> inside a class template <dim>, 1392 template<typename Number> 1393 SymmetricTensor<2,dim,Number> ... 1395 For the latter the declaration of the member function in the class body looks like this: 1397 template<typename Number> 1398 SymmetricTensor<2,dim,Number> ... 1402 template<int dim, typename Number> 1403 SymmetricTensor<2,dim,Number> stress_strain_relation ( const SymmetricTensor<2,dim,Number> &eps, const double &kappa, const double &mu ) 1405 SymmetricTensor<2,dim,Number> sigma; 1407 SymmetricTensor<2,dim,Number> stdTensor_I (( unit_symmetric_tensor<dim,Number>()) ); 1410 Our stress equation is now computed in index notation to simplify the use of the constants and 1411 especially the use of the \a deviator. 1413 for ( unsigned int i=0; i<dim; ++i) 1414 for ( unsigned int j=0; j<dim; ++j ) 1415 sigma[i][j] = kappa * trace(eps) * stdTensor_I[i][j] + 2. * mu * deviator(eps)[i][j]; 1422 @section Ex10 10. Example: Using the wrapper with templated functions 1424 void sacado_test_10 () 1426 std::cout << "Test 10:" << std::endl; 1427 const unsigned int dim=3; 1429 To measure the computation time of certain sections (see below) 1431 TimerOutput timer (std::cout, TimerOutput::summary, TimerOutput::cpu_times); 1434 The following declarations are usually input arguments. So you receive the strain tensor and the constants out of doubles. 1436 SymmetricTensor<2,dim> eps_d; 1449 Now we start working with Sacado: \n 1450 When we use the index notation to compute e.g. our stress we do not need to declare our constants (here kappa, mu) as 1453 We declare our strain tensor as the special data type Sacado_Wrapper::SymTensor from the file "Sacado_Wrapper.h" 1454 where this data type was derived from the SymmetricTensor<2,dim,fad_double>. 1456 Sacado_Wrapper::SymTensor<dim> eps; 1459 Next we initialize our Sacado strain tensor with the values of the inputed double strain tensor: 1464 We define all the entries in the symmetric tensor \a eps as the dofs. So we can later derive any variable 1465 with respect to the strain tensor \a eps. 1466 @note Keep the order first declare \a eps, then initialise it and afterwards set it as dofs 1472 Now we call the templated function via the Sacado data types to get the resulting stress tensor \a sigma. \n 1473 To give you an impression of how much longer computations with the Sacado data type take, 1474 we also measure the time needed for the computation 1476 timer.enter_subsection("Stress via fad_double"); 1477 SymmetricTensor<2,dim,fad_double> sigma = stress_strain_relation ( eps, kappa, mu ); 1478 timer.leave_subsection(); 1479 std::cout << "Stress via fad_double:" << extract_value_from_Sacado<dim> (sigma) << std::endl; 1482 Finally we declare our desired tangent as the fourth order tensor \a C_Sacado and compute the tangent via 1483 the command \a get_tangent. 1485 SymmetricTensor<4,dim> C_Sacado; 1486 eps.get_tangent(C_Sacado, sigma); 1489 For comparsion we can also compute the pure values of the stress tensor by calling 1490 the templated function with the normal data type \a double. 1492 timer.enter_subsection("Stress via double"); 1493 SymmetricTensor<2,dim,double> sigma_d = stress_strain_relation ( eps_d, kappa, mu ); 1494 timer.leave_subsection(); 1495 std::cout << "Stress via double: " << sigma_d << std::endl; 1498 As you can see from the times shown in the command window after you ran the code. 1499 The computation via the Sacado data types takes here around 4...6 times longer than 1500 using the standard type \a double. However, you have to keep in mind that Sacado 1501 computes the tangent whilst computing the stress. Depending on how complicated and computationally demanding the 1502 analytical tangent is, Sacado can possibly compete. 1505 This also means that you should only use the Sacado data types when you are actually 1506 interested in the derivatives. Else the computation is just too expensive. 1513 * The main function just calls all the examples and puts some space between the outputs. 1517 sacado_test_scalar (); 1519 std::cout << std::endl; 1523 std::cout << std::endl; 1527 std::cout << std::endl; 1531 std::cout << std::endl; 1535 std::cout << std::endl; 1539 std::cout << std::endl; 1543 std::cout << std::endl; 1547 std::cout << std::endl; 1551 std::cout << std::endl; 1555 std::cout << std::endl; 1561 @section END The End 1563 Hosted via GitHub according to https://goseeky.wordpress.com/2017/07/22/documentation-101-doxygen-with-github-pages/ \n 1564 Design of the documentation inspired by the deal.ii tutorial programs and created as shown here: https://github.com/jfriedlein/Custom_Doxygen_Documentation void sacado_test_5()
Definition: Sacado_example.cc:572
void sacado_test_scalar()
Definition: Sacado_example.cc:43
void sacado_test_6()
Definition: Sacado_example.cc:605
Sacado::Fad::DFad< double > DFadType
Definition: Sacado_Wrapper.h:19
void sacado_test_8()
Definition: Sacado_example.cc:807
void sacado_test_4()
Definition: Sacado_example.cc:426
void sacado_test_2()
Definition: Sacado_example.cc:72
Definition: Sacado_Wrapper.h:395
void get_curvature(double &Curvature, Sacado::Fad::DFad< DFadType > &argument)
Definition: Sacado_Wrapper.h:456
Definition: Sacado_Wrapper.h:505
Sacado::Fad::DFad< double > fad_double
Definition: Sacado-auxiliary_functions.h:7
void get_tangent(double &Tangent, Sacado::Fad::DFad< DFadType > &argument)
Definition: Sacado_Wrapper.h:436
Definition: Sacado_Wrapper.h:63
Definition: Sacado_Wrapper.h:193
void sacado_test_7()
Definition: Sacado_example.cc:659
void init_set_dofs(SymTensor2< dim > &eps, SymmetricTensor< 2, dim > &eps_init, SW_double2< dim > &double_arg, double &double_init)
Definition: Sacado_Wrapper.h:533