Trilinos::Sacado example
Typedefs | Functions
Sacado_example.cc File Reference
#include <deal.II/base/symmetric_tensor.h>
#include <iostream>
#include <fstream>
#include <cmath>
#include <deal.II/base/timer.h>
#include <Sacado.hpp>
#include "Sacado_Wrapper.h"
#include "Sacado-auxiliary_functions.h"
Include dependency graph for Sacado_example.cc:

Typedefs

using fad_double = Sacado::Fad::DFad< double >
 

Functions

void sacado_test_scalar ()
 
void sacado_test_2 ()
 
void sacado_test_3 ()
 
void sacado_test_3B ()
 
void sacado_test_4 ()
 
void sacado_test_5 ()
 
void sacado_test_6 ()
 
void sacado_test_7 ()
 
void sacado_test_8 ()
 
void sacado_test_9 ()
 
template<int dim, typename Number >
SymmetricTensor< 2, dim, Number > stress_strain_relation (const SymmetricTensor< 2, dim, Number > &eps, const double &kappa, const double &mu)
 
void sacado_test_10 ()
 
int main ()
 

Typedef Documentation

◆ fad_double

using fad_double = Sacado::Fad::DFad<double>

Function Documentation

◆ main()

int main ( )

References sacado_test_10(), sacado_test_2(), sacado_test_3(), sacado_test_3B(), sacado_test_4(), sacado_test_5(), sacado_test_6(), sacado_test_7(), sacado_test_8(), sacado_test_9(), and sacado_test_scalar().

1160 {
1161  sacado_test_scalar ();
1162 
1163  std::cout << std::endl;
1164 
1165  sacado_test_2 ();
1166 
1167  std::cout << std::endl;
1168 
1169  sacado_test_3 ();
1170 
1171  std::cout << std::endl;
1172 
1173  sacado_test_3B ();
1174 
1175  std::cout << std::endl;
1176 
1177  sacado_test_4();
1178 
1179  std::cout << std::endl;
1180 
1181  sacado_test_5();
1182 
1183  std::cout << std::endl;
1184 
1185  sacado_test_6();
1186 
1187  std::cout << std::endl;
1188 
1189  sacado_test_7();
1190 
1191  std::cout << std::endl;
1192 
1193  sacado_test_8();
1194 
1195  std::cout << std::endl;
1196 
1197  sacado_test_9();
1198 
1199  std::cout << std::endl;
1200 
1201  sacado_test_10();
1202 }
void sacado_test_5()
Definition: Sacado_example.cc:572
void sacado_test_scalar()
Definition: Sacado_example.cc:43
void sacado_test_6()
Definition: Sacado_example.cc:605
void sacado_test_10()
Definition: Sacado_example.cc:1086
void sacado_test_8()
Definition: Sacado_example.cc:807
void sacado_test_4()
Definition: Sacado_example.cc:426
void sacado_test_2()
Definition: Sacado_example.cc:72
void sacado_test_9()
Definition: Sacado_example.cc:921
void sacado_test_3()
Definition: Sacado_example.cc:137
void sacado_test_3B()
Definition: Sacado_example.cc:362
void sacado_test_7()
Definition: Sacado_example.cc:659

◆ sacado_test_10()

void sacado_test_10 ( )

References Sacado_Wrapper::SymTensor< dim >::get_tangent(), Sacado_Wrapper::SymTensor< dim >::init(), Sacado_Wrapper::SymTensor< dim >::set_dofs(), and stress_strain_relation().

Referenced by main().

1087 {
1088  std::cout << "Test 10:" << std::endl;
1089  const unsigned int dim=3;
1090  // To measure the computation time of certain sections (see below)
1091  TimerOutput timer (std::cout, TimerOutput::summary, TimerOutput::cpu_times);
1092 
1093  // The following declarations are usually input arguments. So you receive the strain tensor and the constants out of doubles.
1094  SymmetricTensor<2,dim> eps_d;
1095  eps_d[0][0] = 1;
1096  eps_d[1][1] = 2;
1097  eps_d[2][2] = 3;
1098 
1099  eps_d[0][1] = 4;
1100  eps_d[0][2] = 5;
1101  eps_d[1][2] = 6;
1102 
1103  double kappa = 5;
1104  double mu = 2;
1105 
1106  // Now we start working with Sacado: \n
1107  // When we use the index notation to compute e.g. our stress we do not need to declare our constants (here kappa, mu) as
1108  // fad_double.
1109 
1110  // We declare our strain tensor as the special data type Sacado_Wrapper::SymTensor from the file "Sacado_Wrapper.h"
1111  // where this data type was derived from the SymmetricTensor<2,dim,fad_double>.
1113 
1114  // Next we initialize our Sacado strain tensor with the values of the inputed double strain tensor:
1115  eps.init(eps_d);
1116 
1117  // We define all the entries in the symmetric tensor \a eps as the dofs. So we can later derive any variable
1118  // with respect to the strain tensor \a eps.
1119  // @note Keep the order first declare \a eps, then initialise it and afterwards set it as dofs
1120 
1121  eps.set_dofs();
1122 
1123  // Now we call the templated function via the Sacado data types to get the resulting stress tensor \a sigma. \n
1124  // To give you an impression of how much longer computations with the Sacado data type take,
1125  // we also measure the time needed for the computation
1126  timer.enter_subsection("Stress via fad_double");
1127  SymmetricTensor<2,dim,fad_double> sigma = stress_strain_relation ( eps, kappa, mu );
1128  timer.leave_subsection();
1129  std::cout << "Stress via fad_double:" << extract_value_from_Sacado<dim> (sigma) << std::endl;
1130 
1131  // Finally we declare our desired tangent as the fourth order tensor \a C_Sacado and compute the tangent via
1132  // the command \a get_tangent.
1133  SymmetricTensor<4,dim> C_Sacado;
1134  eps.get_tangent(C_Sacado, sigma);
1135 
1136  // For comparsion we can also compute the pure values of the stress tensor by calling
1137  // the templated function with the normal data type \a double.
1138  timer.enter_subsection("Stress via double");
1139  SymmetricTensor<2,dim,double> sigma_d = stress_strain_relation ( eps_d, kappa, mu );
1140  timer.leave_subsection();
1141  std::cout << "Stress via double: " << sigma_d << std::endl;
1142 
1143  // As you can see from the times shown in the command window after you ran the code.
1144  // The computation via the Sacado data types takes here around 4...6 times longer than
1145  // using the standard type \a double. However, you have to keep in mind that Sacado
1146  // computes the tangent whilst computing the stress. Depending on how complicated and computationally demanding the
1147  // analytical tangent is, Sacado can possibly compete.
1148 
1149  // @note
1150  // This also means that you should only use the Sacado data types when you are actually
1151  // interested in the derivatives. Else the computation is just too expensive.
1152 
1153 }
Definition: Sacado_Wrapper.h:66
void get_tangent(SymmetricTensor< 4, dim > &Tangent, SymmetricTensor< 2, dim, fad_double > &sigma)
Definition: Sacado_Wrapper.h:129
SymmetricTensor< 2, dim, Number > stress_strain_relation(const SymmetricTensor< 2, dim, Number > &eps, const double &kappa, const double &mu)
Definition: Sacado_example.cc:1069
void init(SymmetricTensor< 2, dim > &tensor_double)
Definition: Sacado_Wrapper.h:98
void set_dofs(unsigned int nbr_total_dofs=n_dofs)
Definition: Sacado_Wrapper.h:110

◆ sacado_test_2()

void sacado_test_2 ( )

Referenced by main().

73 {
74  std::cout << "Test 2:" << std::endl;
75 
76  // First we set the dimension \a dim: 2D->dim=2; 3D->dim=3 \n This defines the "size" of the tensors and the number of dofs. \ref Ex2 "Example 2" only works in 3D, whereas the following Ex3 is set up dimension-independent.
77  const unsigned int dim = 3;
78 
79  // Declare our input, auxiliary and output variables as SymmetricTensors consisting of fad_doubles (instead of the standard SymmetricTensor out of doubles)
80  SymmetricTensor<2,dim, fad_double> sigma, eps;
81 
82  // Init the strain tensor (the point at which the derivative shall be computed)
83  eps[0][0] = 1;
84  eps[1][1] = 2;
85  eps[2][2] = 3;
86  eps[0][1] = 4;
87  eps[0][2] = 5;
88  eps[1][2] = 6;
89 
90  // Now we declare the dofs. The derivative to a tensor requires all components, therefore we set the components of the strain tensor here one by one as the dofs.
91  // Because our tensors are symmetric, we only need 6 components in 3D instead of 9 for a full second order tensor
92  eps[0][0].diff(0,6);
93  eps[1][1].diff(1,6);
94  eps[2][2].diff(2,6);
95  eps[0][1].diff(3,6);
96  eps[0][2].diff(4,6);
97  eps[1][2].diff(5,6);
98 
99  // The equation describing the stresses (here just a simple test case)
100  sigma = eps;
101 
102  // Let's output the computed stress tensor.
103  std::cout << sigma << std::endl;
104  // The resulting values of \a sigma are fairly boring, due to our simple equation. It is the additional output generated by
105  // this, that is interesting here: \n
106  // output: \n
107  // 1 [ 1 0 0 0 0 0 ] 4 [ 0 0 0 1 0 0 ] 5 [ 0 0 0 0 1 0 ] 4 [ 0 0 0 1 0 0 ] 2 [ 0 1 0 0 0 0 ] 6 [ 0 0 0 0 0 1 ] 5 [ 0 0 0 0 1 0 ] 6 [ 0 0 0 0 0 1 ] 3 [ 0 0 1 0 0 0 ] \n
108  // The numbers 1, 4, 5, 4, ... are the entries in the stress tensor \a sigma. In square brackets we see the derivatives of sigma with respect to all the dofs set previously
109  // given in the order we defined them above. Meaning: The first entry in the square brackets corresponds to the 0-th dof set by
110  // @code eps[0][0].diff(0,6); @endcode referring to the component (0,0) in the strain tensor \a eps.
111 
112  // Computing the derivatives for certain components of the resulting tangent modulus: \n
113  // We now access these lists of derivatives (output above in square brackets) for one component of the stress tensor \a sigma at a time.
114  {
115  // Access the derivatives corresponding to the component (0,0) of the stress tensor \a sigma
116  double *derivs = &sigma[0][0].fastAccessDx(0);
117  // The following output will show us the same derivatives that we already saw above, just formatted differently \n
118  // output: d_sigma[0][0]/d_eps = 1 , 0 , 0 , 0 , 0 , 0 ,
119  std::cout << "d_sigma[0][0]/d_eps = ";
120  for ( unsigned int i=0; i<6; ++i)
121  std::cout << derivs[i] << " , ";
122  std::cout << std::endl;
123  }
124  {
125  // Access the derivatives corresponding to the component (1,2) of the stress tensor \a sigma
126  double *derivs = &sigma[1][2].fastAccessDx(0);
127  // output: d_sigma[1][2]/d_eps = 0 , 0 , 0 , 0 , 0 , 1 ,
128  std::cout << "d_sigma[1][2]/d_eps = ";
129  for ( unsigned int i=0; i<6; ++i)
130  std::cout << derivs[i] << " , ";
131  std::cout << std::endl;
132  }
133 }

◆ sacado_test_3()

void sacado_test_3 ( )

Referenced by main().

138 {
139  std::cout << "Test 3:" << std::endl;
140 
141  const unsigned int dim = 3;
142 
143  // Here we also define some constant, for instance the bulk modulus \a kappa and the second Lamè parameter \a mu.
144  // We now also define one of our constants as fad_double. By doing this we can use the normal multiplication (see below).
145  double kappa_param = 5;
146  fad_double kappa (kappa_param);
147  // The second constant remains as a double just to show the difference.
148  double mu = 2;
149 
150  SymmetricTensor<2,dim, fad_double> sigma, eps;
151 
152  // To simplify the access to the dofs we define a map that relate the components of our strain tensor to the dof-nbr
153  std::map<unsigned int,std::pair<unsigned int,unsigned int>> std_map_indicies;
154 
155  // The point at which the derivative shall be computed: \n
156  // As mentioned previously, we will implement this example for 2D and 3D, hence we once have to set up a strain tensor
157  // and the derivatives for 3D with 6 independent components ...
158  if(dim==3)
159  {
160  eps[0][0] = 1;
161  eps[1][1] = 2;
162  eps[2][2] = 3;
163 
164  eps[0][1] = 4;
165  eps[0][2] = 5;
166  eps[1][2] = 6;
167 
168 
169  eps[0][0].diff(0,6);
170  eps[0][1].diff(1,6);
171  eps[0][2].diff(2,6);
172  eps[1][1].diff(3,6);
173  eps[1][2].diff(4,6);
174  eps[2][2].diff(5,6);
175 
176  // By using the map and the following pairs, we have to set up the relation between strain components and dofs only once
177  // and can use the map to access the entries of the list later, without possibly mixing up indices and creating errors.
178  // Please don't be confused, but the dofs in the Wrapper are set up
179  // in a different order that we showed earlier. Earlier: (0,0)-(1,1)-(2,2)-...; Now: (0,0)-(0,1)-(0,2)-...
180  std::pair<unsigned int, unsigned int> tmp_pair;
181  tmp_pair.first=0; tmp_pair.second=0;
182  std_map_indicies[0] = tmp_pair;
183 
184  tmp_pair.first=0; tmp_pair.second=1;
185  std_map_indicies[1] = tmp_pair;
186 
187  tmp_pair.first=0; tmp_pair.second=2;
188  std_map_indicies[2] = tmp_pair;
189 
190  tmp_pair.first=1; tmp_pair.second=1;
191  std_map_indicies[3] = tmp_pair;
192 
193  tmp_pair.first=1; tmp_pair.second=2;
194  std_map_indicies[4] = tmp_pair;
195 
196  tmp_pair.first=2; tmp_pair.second=2;
197  std_map_indicies[5] = tmp_pair;
198  }
199  // ... and once for 2D with just 3 independent components.
200  else if(dim==2)
201  {
202  eps[0][0] = 1;
203  eps[1][1] = 2;
204 
205  eps[0][1] = 4;
206 
207 
208  eps[0][0].diff(0,3);
209  eps[0][1].diff(1,3);
210  eps[1][1].diff(2,3);
211 
212  std::pair<unsigned int, unsigned int> tmp_pair;
213  tmp_pair.first=0; tmp_pair.second=0;
214  std_map_indicies[0] = tmp_pair;
215 
216  tmp_pair.first=0; tmp_pair.second=1;
217  std_map_indicies[1] = tmp_pair;
218 
219  tmp_pair.first=1; tmp_pair.second=1;
220  std_map_indicies[2] = tmp_pair;
221  }
222  else
223  {
224  throw std::runtime_error("only dim==2 or dim==3 allowed");
225  }
226 
227  // Instead of calling the *.diff(*) on the components one-by-one we could also use the following for-loop, so
228  // we also use the map to set the dofs (as we will do in the Wrapper later).
229  // @code
230  // for ( unsigned int x=0; x<((dim==2)?3:6); ++x )
231  // {
232  // unsigned int i=std_map_indicies[x].first;
233  // unsigned int j=std_map_indicies[x].second;
234  // eps[i][j].diff(x,((dim==2)?3:6));
235  // }
236  // @endcode
237 
238  // For our slightly more complicated stress equation we need the unit and deviatoric tensors.
239  // We can simply define them by writing the values of the already existing deal.ii functions into newly
240  // defined SymmetricTensors build from fad_doubles.
241  SymmetricTensor<2,dim, fad_double> stdTensor_I (( unit_symmetric_tensor<dim,fad_double>()) );
242  SymmetricTensor<4,dim, fad_double> stdTensor_Idev ( (deviator_tensor<dim,fad_double>()) );
243 
244  // With everything set and defined, we can compute our stress \a sigma according to:
245  // \f[ \sigma = \kappa \cdot trace(\varepsilon) \cdot \boldsymbol{I} + 2 \cdot \mu \cdot \varepsilon^{dev} \f]
246  // Here you can see that we can directly multiply the constant and the tensors when kappa is also declared as fad_double
247  sigma = kappa * (trace(eps) * stdTensor_I);
248  // We didn't do the same for mu to once again emphasize the difference between constants as double and as fad_double. \n
249  // The remaining code uses a normal double constant.
250  SymmetricTensor<2,dim,fad_double> tmp = deviator<dim,fad_double>(symmetrize<dim,fad_double>(eps)); tmp*=(mu*2);
251  sigma += tmp;
252  // The fairly cumbersome computation is caused by the way the operators are set up for tensors out of fad_doubles.
253 
254  std::cout << "sigma=" << sigma << std::endl;
255 
256  // Now we want to actually build our tangent modulus called \a C_Sacado that contains all the derivatives and relates
257  // the stress tensor with the strain tensor. \n
258  // The fourth-order tensor \a C_Sacado is our final goal, we don't have to compute anything that is related to Sacado with
259  // this tensor, so we can finally return to our standard SymmetricTensor out of doubles. The latter is necessary to use
260  // the tangent in the actual FE code.
261  SymmetricTensor<4,dim> C_Sacado;
262 
263  // As in \ref Ex2 "example 2" we access the components of the stress tensor one by one. In order to capture all of them we loop over the
264  // components i and j of the stress tensor.
265  for ( unsigned int i=0; i<dim; ++i)
266  for ( unsigned int j=0; j<dim; ++j )
267  {
268  double *derivs = &sigma[i][j].fastAccessDx(0); // Access the derivatives of the (i,j)-th component of \a sigma
269 
270  // To visually ensure that every stress component has in fact all 6 derivatives for 3D or 3 for 2D, we output the size:
271  std::cout<<"size: "<<sigma[i][j].size()<<std::endl;
272 
273  // We loop over all the dofs. To be able to use this independent of the chosen dimension \a dim, we use a ternary operator
274  // to decide whether we have to loop over 6 derivatives or just 3.
275  for(unsigned int x=0;x<((dim==2)?3:6);++x)
276  {
277  unsigned int k=std_map_indicies[x].first;
278  unsigned int l=std_map_indicies[x].second;
279 
280  if(k!=l)/*Compare to Voigt notation since only SymmetricTensor instead of Tensor*/
281  {
282  C_Sacado[i][j][k][l] = 0.5*derivs[x];
283  C_Sacado[i][j][l][k] = 0.5*derivs[x];
284  }
285  else
286  C_Sacado[i][j][k][l] = derivs[x];
287  }
288 
289  }
290 
291  // After resembling the fourth-order tensor, we now have got our tangent saved in \a C_Sacado ready to be used
292 
293  // To ensure that Sacado works properly, we can compute the analytical tangent for comparison
294  double kappa_d = 5;
295  double mu_d = 2;
296  // Our stress equation in this example is still simple enough to derive the tangent analytically by hand:
297  // \f[ \overset{4}{C_{analy}} = \kappa \cdot \boldsymbol{I} \otimes \boldsymbol{I} + 2 \cdot \mu \cdot \overset{4}{I^{dev}} \f]
298  SymmetricTensor<4,dim> C_analy = kappa_d * outer_product(unit_symmetric_tensor<dim>(), unit_symmetric_tensor<dim>()) + 2* mu_d * deviator_tensor<dim>();
299 
300 
301  // We again define our strain tensor \a eps_d (*_d for standard double in contrast to fad_double)
302  SymmetricTensor<2,dim> eps_d;
303 
304  if(dim==3)
305  {
306  eps_d[0][0] = 1;
307  eps_d[1][1] = 2;
308  eps_d[2][2] = 3;
309 
310  eps_d[0][1] = 4;
311  eps_d[0][2] = 5;
312  eps_d[2][1] = 6;
313 
314  }
315  else if(dim==2)
316  {
317  eps_d[0][0] = 1;
318  eps_d[1][1] = 2;
319 
320  eps_d[1][0] = 4;
321 
322  }
323  else
324  {
325  throw std::runtime_error("only dim==2 or dim==3 allowed");
326  }
327  // @todo use boldsymbol for tensors
328 
329  // To output the stress tensor we first have to compute it. We do this here via
330  // \f[ \sigma = \overset{4}{C_{analy}} : \varepsilon \f]
331  // The output exactly matched the result obtained with Sacado.
332  // @note Checking the Sacado stress tensor against an analytically computed or otherwise determined stress tensor is absolutely no way to check whether
333  // the tangent computed via Sacado is correct. When we compute the stress tensor with Sacado and for example mix up a + and - sign, this might not matter
334  // at all if the number that is added or subtracted is small. However, for the tangent this nasty sign can be very critical. Just keep in mind: the
335  // tangent has 81 components and the stress tensor just 9, so how does one want to verify 81 variables by comparing 9?
336 
337  std::cout << "sigma_analy: " << (C_analy*eps_d) << std::endl;
338 
339  // That's the reason we compare all the entries in the Sacado and the analytical tensor one by one
340  for (unsigned int i=0; i<dim; ++i)
341  for ( unsigned int j=0; j<dim; ++j)
342  for ( unsigned int k=0; k<dim; ++k)
343  for ( unsigned int l=0; l<dim; ++l)
344  std::cout << "C_analy["<<i<<"]["<<j<<"]["<<k<<"]["<<l<<"] = " << C_analy[i][j][k][l] << " vs C_Sacado: " << C_Sacado[i][j][k][l] << std::endl;
345 
346 
347  // To simplify the comparison we compute a scalar error as the sum of the absolute differences of each component
348  double error_Sacado_vs_analy=0;
349  for (unsigned int i=0; i<dim; ++i)
350  for ( unsigned int j=0; j<dim; ++j)
351  for ( unsigned int k=0; k<dim; ++k)
352  for ( unsigned int l=0; l<dim; ++l)
353  error_Sacado_vs_analy += std::fabs(C_Sacado[i][j][k][l] - C_analy[i][j][k][l]);
354 
355 
356  // As desired: The numerical error is zero (0 in double precision) and the tensor components are equal
357  std::cout << "numerical error: " << error_Sacado_vs_analy << std::endl;
358 }
Sacado::Fad::DFad< double > fad_double
Definition: Sacado-auxiliary_functions.h:7

◆ sacado_test_3B()

void sacado_test_3B ( )

References Sacado_Wrapper::SymTensor< dim >::get_tangent(), Sacado_Wrapper::SymTensor< dim >::init(), and Sacado_Wrapper::SymTensor< dim >::set_dofs().

Referenced by main().

363 {
364  std::cout << "Test 3B:" << std::endl;
365  const unsigned int dim=3;
366 
367  // The following declarations are usually input arguments. So you receive the strain tensor and the constants out of doubles.
368  SymmetricTensor<2,dim> eps_d;
369  eps_d[0][0] = 1;
370  eps_d[1][1] = 2;
371  eps_d[2][2] = 3;
372 
373  eps_d[0][1] = 4;
374  eps_d[0][2] = 5;
375  eps_d[1][2] = 6;
376 
377  double kappa = 5;
378  double mu = 2;
379 
380  // Now we start working with Sacado: \n
381  // When we use the index notation to compute e.g. our stress we do not need to declare our constants (here kappa, mu) as
382  // fad_double.
383 
384  // We declare our strain tensor as the special data type Sacado_Wrapper::SymTensor from the file "Sacado_Wrapper.h"
385  // where this data type was derived from the SymmetricTensor<2,dim,fad_double>.
387 
388  // Next we initialize our Sacado strain tensor with the values of the inputed double strain tensor:
389  eps.init(eps_d);
390 
391  // We define all the entries in the symmetric tensor \a eps as the dofs. So we can later derive any variable
392  // with respect to the strain tensor \a eps.
393  // @note Keep the order first declare \a eps, then initialise it and afterwards set it as dofs
394 
395  eps.set_dofs();
396 
397  // Now we declare our output and auxiliary variables as Sacado-Tensors.
398  SymmetricTensor<2,dim,fad_double> sigma;
399 
400  SymmetricTensor<2,dim, fad_double> stdTensor_I (( unit_symmetric_tensor<dim,fad_double>()) );
401 
402  // Our stress equation is now computed in index notation to simplify the use of the constants and
403  // especially the use of the \a deviator.
404  for ( unsigned int i=0; i<dim; ++i)
405  for ( unsigned int j=0; j<dim; ++j )
406  sigma[i][j] = kappa * trace(eps) * stdTensor_I[i][j] + 2. * mu * deviator(eps)[i][j];
407 
408  // Finally we declare our desired tangent as the fourth order tensor \a C_Sacado and compute the tangent via
409  // the command \a get_tangent.
410  SymmetricTensor<4,dim> C_Sacado;
411  eps.get_tangent(C_Sacado, sigma);
412 
413  // We could again compare the herein computed tangent with the analytical tangent from Ex2, but as before
414  // the results are fairly boring, because Sacado hits the analytical tangent exactly --- no surprise for such
415  // simple equations.
416 
417  // And that's it. By using the Sacado_wrapper we can achieve everything from Ex2 (besides the equations)
418  // with just four lines of code namely:
419  // - eps.init(eps_d); // To initialize the Sacado strain tensor
420  // - eps.set_dofs(); // To declare the components of eps as the dofs
421  // - eps.get_tangent(*); // To get the tangent
422 }
Definition: Sacado_Wrapper.h:66
void get_tangent(SymmetricTensor< 4, dim > &Tangent, SymmetricTensor< 2, dim, fad_double > &sigma)
Definition: Sacado_Wrapper.h:129
void init(SymmetricTensor< 2, dim > &tensor_double)
Definition: Sacado_Wrapper.h:98
void set_dofs(unsigned int nbr_total_dofs=n_dofs)
Definition: Sacado_Wrapper.h:110

◆ sacado_test_4()

void sacado_test_4 ( )

References Sacado_Wrapper::SymTensor< dim >::get_tangent(), Sacado_Wrapper::SW_double< dim >::get_tangent(), Sacado_Wrapper::SymTensor< dim >::init(), Sacado_Wrapper::SW_double< dim >::init(), and Sacado_Wrapper::DoFs_summary< dim >::set_dofs().

Referenced by main().

427 {
428  std::cout << "Test 4:" << std::endl;
429  const unsigned int dim=3;
430 
431  // The following declarations are usually input arguments. So you receive the strain tensor \q eps_d,
432  // the damage variable \a phi and the constants \a kappa and \a mu out of doubles.
433  SymmetricTensor<2,dim> eps_d;
434  eps_d[0][0] = 1;
435  eps_d[1][1] = 2;
436  eps_d[2][2] = 3;
437 
438  eps_d[0][1] = 4;
439  eps_d[0][2] = 5;
440  eps_d[1][2] = 6;
441 
442  double phi_d = 0.3;
443 
444  // We don't need these constants in the current example.
445  // double kappa = 5;
446  // double mu = 2;
447 
448 
449  // We set up our strain tensor as in Ex3B.
452 
453  // Initialize the strain tensor and the damage variable
454  eps.init(eps_d);
455  phi.init(phi_d);
456 
457  // Set the dofs, where the argument sets the total nbr of dofs (3 or 6 for the sym. tensor and 1 for the double)
458 // eps.set_dofs(eps.n_independent_components+1/*an additional dof for phi*/);
459 //
460  // In order to also compute derivatives with respect to the scalar \a phi, we add this scalar to our list
461  // of derivatives. Because we have already defined 3 or 6 dofs our additional dof will be placed at the end
462  // of this list. We set this up with the member variable start_index ...
463 // phi.start_index=eps.n_independent_components;
464  // and again using the input argument representing the total number of dofs
465 // phi.set_dofs(eps.n_independent_components+1);
466 
467  // All of the above 3 lines of code are automatically done by the DoFs_summary class. So, to
468  // set our dofs we just create an instance and call set_dofs with our variables containing the desired dofs.
470  DoFs_summary.set_dofs(eps, phi);
471 
472 
473  // Compute the stress tensor and damage variable \a d (here we just use some arbitrary equations for testing): \n
474  // Let us first declare our output (and auxiliary) variables as Sacado data types.
475  SymmetricTensor<2,dim,fad_double> sigma;
476  fad_double d;
477  // @todo It would be nice to use the data types from the Sacado_Wrapper for all the Sacado variables. But
478  // somehow the operators (multiply*, ...) seem to cause conflicts again.
479 
480  // The actual computation in the following scope uses the exact same equation as your normal computation e. g. via the data type double.
481  // Hence, you could either directly compute your stress, etc. via the Sacado variables or you define
482  // template functions that contain your equations and are either called templated with double or fad_double.
483  // When using the first option, please consider the computation time that is generally higher for a computation
484  // with fad_double than with normal doubles (own experience in a special case: slower by factor 30).
485  // The second option with templates does not suffer these issues.
486  {
487  d = phi*phi + 25 + trace(eps) + eps.norm();
488  std::cout << "d=" << d << std::endl;
489 
490  for ( unsigned int i=0; i<dim; ++i)
491  for ( unsigned int j=0; j<dim; ++j )
492  sigma[i][j] = phi * d * eps[i][j];
493  // ToDo: strangely when phi is a fad_double then the multiplication phi * eps works directly without
494  // having to use the index notation
495  std::cout << "sigma=" << sigma << std::endl << std::endl;
496  }
497 
498 
499  // Get the tangents
500  // d_sigma / d_eps: SymmetricTensor with respect to SymmetricTensor
501  SymmetricTensor<4,dim> C_Sacado;
502  eps.get_tangent(C_Sacado, sigma);
503  std::cout << "C_Sacado=" << C_Sacado << std::endl;
504 
505  // Compute the analytical tangent:
506  SymmetricTensor<4,dim> C_analy;
507  C_analy = ( std::pow(phi_d, 3) + 25*phi_d + phi_d*trace(eps_d) + phi_d*eps_d.norm() ) * identity_tensor<dim>()
508  + phi_d * outer_product( eps_d, unit_symmetric_tensor<dim>())
509  + phi_d * outer_product( eps_d, eps_d ) * 1./eps_d.norm();
510  // @note Be aware of the difference between \f[ eps_d \otimes \boldsymbol{1} \text{ and } \boldsymbol{1} \otimes eps_d \f]
511 
512  std::cout << "C_analy =" << C_analy << std::endl;
513 
514  // To simplify the comparison we compute a scalar error as the sum of the absolute differences of each component
515  double error_Sacado_vs_analy=0;
516  for (unsigned int i=0; i<dim; ++i)
517  for ( unsigned int j=0; j<dim; ++j)
518  for ( unsigned int k=0; k<dim; ++k)
519  for ( unsigned int l=0; l<dim; ++l)
520  error_Sacado_vs_analy += std::fabs(C_Sacado[i][j][k][l] - C_analy[i][j][k][l]);
521  std::cout << "numerical error: " << error_Sacado_vs_analy << std::endl << std::endl;
522 
523  // d_d / d_eps: double with respect to SymmetricTensor
524  SymmetricTensor<2,dim> d_d_d_eps;
525  eps.get_tangent(d_d_d_eps, d);
526  std::cout << "d_d_d_eps =" << d_d_d_eps << std::endl;
527  SymmetricTensor<2,dim> d_d_d_eps_analy;
528  d_d_d_eps_analy = unit_symmetric_tensor<dim>() + eps_d / eps_d.norm();
529  std::cout << "d_d_d_eps_analy=" << d_d_d_eps_analy << std::endl << std::endl;
530 
531  // d_sigma / d_phi: SymmetricTensor with respect to double
532  SymmetricTensor<2,dim> d_sigma_d_phi;
533  phi.get_tangent(d_sigma_d_phi, sigma);
534  std::cout << "d_sigma_d_phi =" << d_sigma_d_phi << std::endl;
535  SymmetricTensor<2,dim> d_sigma_d_phi_analy;
536  d_sigma_d_phi_analy = ( phi_d*phi_d + 25 + trace(eps_d) + eps_d.norm() + 2 * phi_d*phi_d ) * eps_d;
537  std::cout << "d_sigma_d_phi_analy=" << d_sigma_d_phi_analy << std::endl << std::endl;
538 
539  // Retrieve the values stored in \a sigma:
540  SymmetricTensor<2,dim> sigma_d;
541  for ( unsigned int i=0; i<dim; ++i)
542  for ( unsigned int j=0; j<dim; ++j )
543  sigma_d[i][j] = sigma[i][j].val();
544  std::cout << "sigma_d = " << sigma_d << std::endl;
545 
546  // d_d / d_phi: double with respect to double
547  double d_d_d_phi;
548  phi.get_tangent(d_d_d_phi, d);
549  std::cout << "d_d_d_phi=" << d_d_d_phi << std::endl;
550 
551  // Retrieve the value stored in d
552  double d_double = d.val();
553 
554  // Taylor-series for point x
555  // @todo Maybe add some more text on the linearization
556  double x = phi_d + 0.05;
557  std::cout << "d_lin = d_d_d_phi * (phi_d - x) + d@(phi_d) = " << d_d_d_phi * (x-phi_d) + d_double << std::endl;
558  std::cout << "d@x = " << x*x + 25 + trace(eps_d) + eps_d.norm() << std::endl;
559 
560  // And that's it. By using the Sacado_wrapper we can compute derivatives with respect to
561  // a tensor and a scalar at the same time (besides the equations)
562  // in essence with just the following lines of code namely:
563  // - eps.init(eps_d); phi.init(phi_d); // To initialize the Sacado strain tensor and scalar damage variable
564  // - DoFs_summary.set_dofs(eps, phi); // To declare the components of eps and phi as the dofs
565  // - eps.get_tangent(*); // To get tangents with respect to eps
566  // - phi.get_tangent(*); // To get tangents with respect to phi
567 }
Definition: Sacado_Wrapper.h:66
void init(const double &double_init)
Definition: Sacado_Wrapper.h:351
void get_tangent(SymmetricTensor< 4, dim > &Tangent, SymmetricTensor< 2, dim, fad_double > &sigma)
Definition: Sacado_Wrapper.h:129
void set_dofs(SymTensor< dim > &eps, SW_double< dim > &double_arg)
Definition: Sacado_Wrapper.h:521
void init(SymmetricTensor< 2, dim > &tensor_double)
Definition: Sacado_Wrapper.h:98
Definition: Sacado_Wrapper.h:505
Sacado::Fad::DFad< double > fad_double
Definition: Sacado-auxiliary_functions.h:7
Definition: Sacado_Wrapper.h:321
void get_tangent(SymmetricTensor< 2, dim > &Tangent, SymmetricTensor< 2, dim, fad_double > &sigma)
Definition: Sacado_Wrapper.h:363

◆ sacado_test_5()

void sacado_test_5 ( )

Referenced by main().

573 {
574  const unsigned int dim=3;
575  std::cout << "Test 5:" << std::endl;
576  Tensor<1,dim,fad_double> c;
577  fad_double a,b;
578  unsigned int n_dofs=2;
579  a = 1; b = 2; // at the point (a,b) = (1,2)
580  a.diff(0,2); // Set a to be dof 0, in a 2-dof system.
581  b.diff(1,2); // Set b to be dof 1, in a 2-dof system.
582  // c is now a vector with three components
583  c[0] = 2*a+3*b;
584  c[1] = 4*a+5*b;
585  c[2] = 6*a+7*b;
586 
587  // Access to the derivatives works as before.
588  for(unsigned int i=0;i<dim;++i)
589  {
590  const fad_double &derivs = c[i]; // Access derivatives
591  for(unsigned int j=0;j<n_dofs;++j)
592  {
593  std::cout << "Derivatives at the point (" << a << "," << b << ") for "
594  <<i<<"th component wrt "<<j<<"th direction "<< std::endl;
595  std::cout << "dc_i/dxj = " << derivs.fastAccessDx(j) << std::endl;
596  }
597  }
598 }
Sacado::Fad::DFad< double > fad_double
Definition: Sacado-auxiliary_functions.h:7

◆ sacado_test_6()

void sacado_test_6 ( )

Referenced by main().

606 {
607  std::cout << "Test 6:" << std::endl;
608  // Define the variables used in the computation (inputs: a, b; output: c; auxiliaries: *) as doubles
609  double a=1;
610  double b=2;
611 
612  // Number of independent variables (scalar a and b)
613  int num_dofs = 2;
614 
615  // Define another data type containing even more Sacado data types
616  // @todo try to merge the fad_double data type with this templated data type
617  typedef Sacado::Fad::DFad<double> DFadType;
618  Sacado::Fad::DFad<DFadType> afad(num_dofs, 0, a);
619  Sacado::Fad::DFad<DFadType> bfad(num_dofs, 1, b);
620  Sacado::Fad::DFad<DFadType> cfad;
621 
622  // Output the variables: We se that the values of \a a and \a b are set but the derivatives have not yet been fully declared
623  std::cout << "afad=" << afad << std::endl;
624  std::cout << "bfad=" << bfad << std::endl;
625  std::cout << "cfad=" << cfad << std::endl;
626 
627  // Now we set the "inner" derivatives.
628  afad.val() = fad_double(num_dofs, 0, a); // set afad.val() as the first dof and init it with the double a
629  bfad.val() = fad_double(num_dofs, 1, b);
630 
631  // Compute function and derivative with AD
632  cfad = 2*afad + std::cos(afad*bfad);
633 
634  // After this, we output the variables again and see that some additional derivatives have been declared. Furthermore,
635  // \a cfad is filled with the values and derivatives
636  std::cout << "afad=" << afad << std::endl;
637  std::cout << "bfad=" << bfad << std::endl;
638  std::cout << "cfad=" << cfad << std::endl;
639 
640  // Extract value and derivatives
641  double c_ad = cfad.val().val(); // r
642  double dcda_ad = cfad.dx(0).val(); // dr/da
643  double dcdb_ad = cfad.dx(1).val(); // dr/db
644  double d2cda2_ad = cfad.dx(0).dx(0); // d^2r/da^2
645  double d2cdadb_ad = cfad.dx(0).dx(1); // d^2r/dadb
646  double d2cdbda_ad = cfad.dx(1).dx(0); // d^2r/dbda
647  double d2cdb2_ad = cfad.dx(1).dx(1); // d^2/db^2
648 
649  // Now we can print the actual double value of c and some of the derivatives:
650  std::cout << "c_ad=" << c_ad << std::endl;
651  std::cout << "Derivatives at the point (" << a << "," << b << ")" << std::endl;
652  std::cout << "dc/da = " << dcda_ad << ", dc/db=" << dcdb_ad << std::endl;
653  std::cout << "d²c/da² = " << d2cda2_ad << ", d²c/db²=" << d2cdb2_ad << std::endl;
654  std::cout << "d²c/dadb = " << d2cdadb_ad << ", d²c/dbda=" << d2cdbda_ad << std::endl;
655 }
Sacado::Fad::DFad< double > DFadType
Definition: Sacado_Wrapper.h:19
Sacado::Fad::DFad< double > fad_double
Definition: Sacado_example.cc:36

◆ sacado_test_7()

void sacado_test_7 ( )

Referenced by main().

660 {
661  const unsigned int dim=3;
662 
663  std::cout << "Test 7:" << std::endl;
664 
665  // Defining the inputs (material parameters, strain tensor)
666  double lambda=1;
667  double mu=2;
668  SymmetricTensor<2,dim, double> eps;
669 
670  eps[0][0] = 1.;
671  eps[1][1] = 2.;
672  eps[2][2] = 3.;
673 
674  eps[0][1] = 4.;
675  eps[0][2] = 5.;
676  eps[1][2] = 6.;
677 
678  // Here we skip the one-field example and right away show the equations for a two-field problem
679  // with \a eps and \a phi.
680  double phi=0.3;
681 
682  // Setup of the map relating the indices (as before)
683  std::map<unsigned int,std::pair<unsigned int,unsigned int>> std_map_indicies;
684 
685  std::pair<unsigned int, unsigned int> tmp_pair;
686  tmp_pair.first=0; tmp_pair.second=0;
687  std_map_indicies[0] = tmp_pair;
688 
689  tmp_pair.first=0; tmp_pair.second=1;
690  std_map_indicies[1] = tmp_pair;
691 
692  tmp_pair.first=0; tmp_pair.second=2;
693  std_map_indicies[2] = tmp_pair;
694 
695  tmp_pair.first=1; tmp_pair.second=1;
696  std_map_indicies[3] = tmp_pair;
697 
698  tmp_pair.first=1; tmp_pair.second=2;
699  std_map_indicies[4] = tmp_pair;
700 
701  tmp_pair.first=2; tmp_pair.second=2;
702  std_map_indicies[5] = tmp_pair;
703 
704  // Number of independent variables (6 for the tensor and 1 for the scalar phi)
705  const unsigned int nbr_dofs = 6+1;
706 
707  // Declaring the special data types containing all derivatives
708  typedef Sacado::Fad::DFad<double> DFadType;
709  SymmetricTensor<2,dim, Sacado::Fad::DFad<DFadType> > eps_fad, eps_fad_squared;
710  Sacado::Fad::DFad<DFadType> phi_fad;
711 
712 
713  // Setting the dofs
714  for ( unsigned int x=0; x<6; ++x )
715  {
716  unsigned int i=std_map_indicies[x].first;
717  unsigned int j=std_map_indicies[x].second;
718  (eps_fad[i][j]).diff( x, nbr_dofs); // set up the "inner" derivatives
719  (eps_fad[i][j]).val() = fad_double(nbr_dofs, x, eps[i][j]); // set up the "outer" derivatives
720  }
721 
722  phi_fad.diff( 6, nbr_dofs );
723  phi_fad.val() = fad_double(nbr_dofs, 6, phi); // set up the "outer" derivatives
724 
725  std::cout << "eps_fad=" << eps_fad << std::endl;
726  std::cout << "phi_fad=" << phi_fad << std::endl;
727 
728  // Compute eps² = eps_ij * eps_jk in index notation
729  for ( unsigned int i=0; i<dim; ++i)
730  for ( unsigned int k=0; k<dim; ++k )
731  for ( unsigned int j=0; j<dim; ++j )
732  if ( i>=k )
733  eps_fad_squared[i][k] += eps_fad[i][j] * eps_fad[j][k];
734 
735  // Compute the strain energy density
736  Sacado::Fad::DFad<DFadType> energy;
737  energy = lambda/2. * trace(eps_fad)*trace(eps_fad) + mu * trace(eps_fad_squared) + 25 * phi_fad * trace(eps_fad);
738 
739  // Give some insight into the storage of the values and derivatives
740  std::cout << "energy=" << energy << std::endl;
741 
742  // Compute sigma as \f[ \frac{\partial \Psi}{\partial \boldsymbol{\varepsilon}} \f]
743  SymmetricTensor<2,dim> sigma_Sac;
744  for ( unsigned int x=0; x<6; ++x )
745  {
746  unsigned int i=std_map_indicies[x].first;
747  unsigned int j=std_map_indicies[x].second;
748  if ( i!=j )
749  sigma_Sac[i][j] = 0.5 * energy.dx(x).val();
750  else
751  sigma_Sac[i][j] = energy.dx(x).val();
752  }
753  std::cout << "sigma_Sacado=" << sigma_Sac << std::endl;
754 
755  double d_energy_d_phi = energy.dx(6).val();
756  std::cout << "d_energy_d_phi=" << d_energy_d_phi << std::endl;
757 
758  double d2_energy_d_phi_2 = energy.dx(6).dx(6);
759  std::cout << "d2_energy_d_phi_2=" << d2_energy_d_phi_2 << std::endl;
760 
761  // Analytical stress tensor:
762  SymmetricTensor<2,dim> sigma;
763  sigma = lambda*trace(eps)*unit_symmetric_tensor<dim>() + 2. * mu * eps + 25 * phi * unit_symmetric_tensor<dim>();
764  std::cout << "analy. sigma=" << sigma << std::endl;
765 
766 
767  // Sacado-Tangent
768  SymmetricTensor<4,dim> C_Sac;
769  for(unsigned int x=0;x<6;++x)
770  for(unsigned int y=0;y<6;++y)
771  {
772  const unsigned int i=std_map_indicies[y].first;
773  const unsigned int j=std_map_indicies[y].second;
774  const unsigned int k=std_map_indicies[x].first;
775  const unsigned int l=std_map_indicies[x].second;
776 
777  double deriv = energy.dx(x).dx(y); // Access the derivatives of the (i,j)-th component of \a sigma
778 
779  if ( k!=l && i!=j )
780  C_Sac[i][j][k][l] = 0.25* deriv;
781  else if(k!=l)/*Compare to Voigt notation since only SymmetricTensor instead of Tensor*/
782  {
783  C_Sac[i][j][k][l] = 0.5*deriv;
784  C_Sac[i][j][l][k] = 0.5*deriv;
785  }
786  else
787  C_Sac[i][j][k][l] = deriv;
788  }
789 
790  // Analytical tangent
791  SymmetricTensor<4,dim> C_analy;
792  C_analy = lambda * outer_product(unit_symmetric_tensor<dim>(), unit_symmetric_tensor<dim>()) + 2. * mu * identity_tensor<dim>();
793 
794  double error_Sacado_vs_analy=0;
795  for (unsigned int i=0; i<dim; ++i)
796  for ( unsigned int j=0; j<dim; ++j)
797  for ( unsigned int k=0; k<dim; ++k)
798  for ( unsigned int l=0; l<dim; ++l)
799  error_Sacado_vs_analy += std::fabs(C_Sac[i][j][k][l] - C_analy[i][j][k][l]);
800 
801  std::cout << "Numerical error=" << error_Sacado_vs_analy << std::endl;
802 }
Sacado::Fad::DFad< double > DFadType
Definition: Sacado_Wrapper.h:19
Sacado::Fad::DFad< double > fad_double
Definition: Sacado_example.cc:36

◆ sacado_test_8()

void sacado_test_8 ( )

References Sacado_Wrapper::SW_double2< dim >::get_curvature(), Sacado_Wrapper::DoFs_summary< dim >::get_curvature(), Sacado_Wrapper::SW_double2< dim >::get_tangent(), and Sacado_Wrapper::DoFs_summary< dim >::init_set_dofs().

Referenced by main().

809 {
810  const unsigned int dim=3;
811 
812  std::cout << "Test 8:" << std::endl;
813 
814  // Defining the inputs (material parameters, strain tensor)
815  double lambda=1;
816  double mu=2;
817  SymmetricTensor<2,dim, double> eps;
818  double phi = 0.3;
819 
820  eps[0][0] = 1.;
821  eps[1][1] = 2.;
822  eps[2][2] = 3.;
823 
824  eps[0][1] = 4.;
825  eps[0][2] = 5.;
826  eps[1][2] = 6.;
827 
828  // Declaring the special data types containing all derivatives
829  typedef Sacado::Fad::DFad<double> DFadType;
830 
831  // Declare the variables \a eps_fad and \a phi_fad as the special Wrapper data types
834 
835  // Declare the summary data type relating all the dofs and initialising them too
837  DoFs_summary.init_set_dofs(eps_fad, eps, phi_fad, phi);
838 
839  // The variables are outputted to give some insight into the storage of the values (derivatives still trivial).
840  std::cout << "eps_fad=" << eps_fad << std::endl;
841  std::cout << "phi_fad=" << phi_fad << std::endl;
842 
843  // Compute eps² = eps_ij * eps_jk in index notation
844  SymmetricTensor<2,dim, Sacado::Fad::DFad<DFadType> > eps_fad_squared;
845  for ( unsigned int i=0; i<dim; ++i)
846  for ( unsigned int k=0; k<dim; ++k )
847  for ( unsigned int j=0; j<dim; ++j )
848  if ( i>=k )
849  eps_fad_squared[i][k] += eps_fad[i][j] * eps_fad[j][k];
850 
851  // Compute the strain energy density
852  Sacado::Fad::DFad<DFadType> energy;
853  energy = lambda/2. * trace(eps_fad)*trace(eps_fad) + mu * trace(eps_fad_squared) + 25 * phi_fad * trace(eps_fad);
854 
855  // The energy is outputted (formatted by hand) to give some insight into the storage of the values and derivatives. \n
856  // energy=399 [ 17.5 32 40 21.5 48 25.5 150 ] \n
857  // [ 17.5 [ 5 0 0 1 0 1 25 ] 32 [ 0 8 0 0 0 0 0 ] 40 [ 0 0 8 0 0 0 0 ] \n
858  // 21.5 [ 1 0 0 5 0 1 25 ] 48 [ 0 0 0 0 8 0 0 ] 25.5 [ 1 0 0 1 0 5 25 ] \n
859  // 150 [ 25 0 0 25 0 25 0 ] ]
860 
861  std::cout << "energy=" << energy << std::endl;
862 
863  // Compute sigma as \f[ \boldsymbol{\sigma} = \frac{\partial \Psi}{\partial \boldsymbol{\varepsilon}} \f]
864  SymmetricTensor<2,dim> sigma_Sac;
865  eps_fad.get_tangent(sigma_Sac, energy);
866  std::cout << "sigma_Sacado=" << sigma_Sac << std::endl;
867 
868  double d_energy_d_phi;
869  phi_fad.get_tangent(d_energy_d_phi, energy);
870  std::cout << "d_energy_d_phi=" << d_energy_d_phi << std::endl;
871 
872 
873  // Analytical stress tensor:
874  SymmetricTensor<2,dim> sigma;
875  sigma = lambda*trace(eps)*unit_symmetric_tensor<dim>() + 2. * mu * eps + 25 * phi * unit_symmetric_tensor<dim>();
876  std::cout << "analy. sigma=" << sigma << std::endl;
877 
878 
879  // Sacado stress tangent (or eps curvature) as \f[ \frac{\partial^2 \Psi}{\partial \boldsymbol{\varepsilon}^2} \f]
880  SymmetricTensor<4,dim> C_Sac;
881  eps_fad.get_curvature(C_Sac, energy);
882 
883  // Sacado phi curvature as \f[ \frac{\partial^2 \Psi}{\partial \varphi^2} \f]
884  double d2_energy_d_phi_2;
885  phi_fad.get_curvature(d2_energy_d_phi_2, energy);
886  std::cout << "d2_energy_d_phi_2=" << d2_energy_d_phi_2 << std::endl;
887 
888  // Sacado derivatives \f[ \frac{\partial^2 \Psi}{\partial \boldsymbol{\varepsilon} \partial \varphi} \f]
889  SymmetricTensor<2,dim> d2_energy_d_eps_d_phi;
890  DoFs_summary.get_curvature(d2_energy_d_eps_d_phi, energy, eps_fad, phi_fad);
891  std::cout << "d2_energy_d_eps_d_phi=" << d2_energy_d_eps_d_phi << std::endl;
892 
893  // Sacado derivatives \f[ \frac{\partial^2 \Psi}{\partial \varphi \partial \boldsymbol{\varepsilon}} \f]
894  SymmetricTensor<2,dim> d2_energy_d_phi_d_eps;
895  DoFs_summary.get_curvature(d2_energy_d_phi_d_eps, energy, phi_fad, eps_fad);
896  std::cout << "d2_energy_d_phi_d_eps=" << d2_energy_d_phi_d_eps << std::endl;
897 
898  // When you consider the output: \n
899  // d2_energy_d_eps_d_phi=25 0 0 0 25 0 0 0 25 \n
900  // d2_energy_d_phi_d_eps=25 0 0 0 25 0 0 0 25 \n
901  // in detail you will notice that both second derivatives are identical. This compplies with the Schwarz integrability condition (Symmetry of second derivatives)
902  // (ignoring all limitation and requirements), it holds
903  // \f[ \frac{\partial^2 \Psi}{\partial \boldsymbol{\varepsilon} \partial \varphi} = \frac{\partial^2 \Psi}{\partial \varphi \partial \boldsymbol{\varepsilon}} \f]
904 
905  // Analytical stress tangent
906  SymmetricTensor<4,dim> C_analy;
907  C_analy = lambda * outer_product(unit_symmetric_tensor<dim>(), unit_symmetric_tensor<dim>()) + 2. * mu * identity_tensor<dim>();
908 
909  // Compute the error for the stress tangent
910  double error_Sacado_vs_analy=0;
911  for (unsigned int i=0; i<dim; ++i)
912  for ( unsigned int j=0; j<dim; ++j)
913  for ( unsigned int k=0; k<dim; ++k)
914  for ( unsigned int l=0; l<dim; ++l)
915  error_Sacado_vs_analy += std::fabs(C_Sac[i][j][k][l] - C_analy[i][j][k][l]);
916  std::cout << "Numerical error=" << error_Sacado_vs_analy << std::endl;
917 }
Sacado::Fad::DFad< double > DFadType
Definition: Sacado_Wrapper.h:19
Definition: Sacado_Wrapper.h:395
void get_curvature(SymmetricTensor< 2, dim > &Curvature, Sacado::Fad::DFad< DFadType > &argument, SymTensor2< dim > &eps, SW_double2< dim > &double_arg)
Definition: Sacado_Wrapper.h:580
void get_curvature(double &Curvature, Sacado::Fad::DFad< DFadType > &argument)
Definition: Sacado_Wrapper.h:456
Definition: Sacado_Wrapper.h:505
void get_tangent(double &Tangent, Sacado::Fad::DFad< DFadType > &argument)
Definition: Sacado_Wrapper.h:436
Definition: Sacado_Wrapper.h:193
void init_set_dofs(SymTensor2< dim > &eps, SymmetricTensor< 2, dim > &eps_init, SW_double2< dim > &double_arg, double &double_init)
Definition: Sacado_Wrapper.h:533

◆ sacado_test_9()

void sacado_test_9 ( )

Referenced by main().

923 {
924  const unsigned int dim=3;
925 
926  std::cout << "Test 9:" << std::endl;
927 
928  double kappa_param = 5;
929  fad_double kappa (kappa_param);
930  double mu = 2;
931 
932  SymmetricTensor<2,dim, fad_double> sigma, eps;
933 
934  std::map<unsigned int,std::pair<unsigned int,unsigned int>> std_map_indicies;
935 
936  eps[0][0] = 1;
937  eps[1][1] = 2;
938  eps[2][2] = 3;
939 
940  eps[0][1] = 4;
941  eps[0][2] = 5;
942  eps[1][2] = 6;
943 
944 
945  eps[0][0].diff(0,6);
946  eps[0][1].diff(1,6);
947  eps[0][2].diff(2,6);
948  eps[1][1].diff(3,6);
949  eps[1][2].diff(4,6);
950  eps[2][2].diff(5,6);
951 
952  std::pair<unsigned int, unsigned int> tmp_pair;
953  tmp_pair.first=0; tmp_pair.second=0;
954  std_map_indicies[0] = tmp_pair;
955 
956  tmp_pair.first=0; tmp_pair.second=1;
957  std_map_indicies[1] = tmp_pair;
958 
959  tmp_pair.first=0; tmp_pair.second=2;
960  std_map_indicies[2] = tmp_pair;
961 
962  tmp_pair.first=1; tmp_pair.second=1;
963  std_map_indicies[3] = tmp_pair;
964 
965  tmp_pair.first=1; tmp_pair.second=2;
966  std_map_indicies[4] = tmp_pair;
967 
968  tmp_pair.first=2; tmp_pair.second=2;
969  std_map_indicies[5] = tmp_pair;
970 
971  SymmetricTensor<2,dim, fad_double> stdTensor_I (( unit_symmetric_tensor<dim,fad_double>()) );
972 
973  sigma = kappa * (trace(eps) * stdTensor_I);
974  SymmetricTensor<2,dim,fad_double> tmp = deviator<dim,fad_double>(symmetrize<dim,fad_double>(eps)); tmp*=(mu*2);
975  sigma += tmp;
976 
977  std::cout << "sigma=" << sigma << std::endl;
978 
979  // Retrieve the values stored in \a sigma:
980  SymmetricTensor<2,dim> sigma_d;
981  for ( unsigned int i=0; i<dim; ++i)
982  for ( unsigned int j=0; j<dim; ++j )
983  sigma_d[i][j] = sigma[i][j].val();
984 
985  SymmetricTensor<4,dim> C_Sacado;
986 
987  for ( unsigned int i=0; i<dim; ++i)
988  for ( unsigned int j=0; j<dim; ++j )
989  {
990  double *derivs = &sigma[i][j].fastAccessDx(0); // Access the derivatives of the (i,j)-th component of \a sigma
991 
992  for(unsigned int x=0;x<((dim==2)?3:6);++x)
993  {
994  unsigned int k=std_map_indicies[x].first;
995  unsigned int l=std_map_indicies[x].second;
996 
997  if(k!=l)/*Compare to Voigt notation since only SymmetricTensor instead of Tensor*/
998  {
999  C_Sacado[i][j][k][l] = 0.5*derivs[x];
1000  C_Sacado[i][j][l][k] = 0.5*derivs[x];
1001  }
1002  else
1003  C_Sacado[i][j][k][l] = derivs[x];
1004  }
1005  }
1006 
1007  SymmetricTensor<2,dim> eps_d;
1008  eps_d[0][0] = 1;
1009  eps_d[1][1] = 2;
1010  eps_d[2][2] = 3;
1011 
1012  eps_d[0][1] = 4;
1013  eps_d[0][2] = 5;
1014  eps_d[1][2] = 6;
1015 
1016  SymmetricTensor<2,dim> stress_from_tangent = C_Sacado*eps_d;
1017 
1018  std::cout << "C_Sacado*eps_d=" << stress_from_tangent << std::endl;
1019  std::cout << "sigma= " << sigma_d << std::endl;
1020 
1021  // @todo Add the link to the ac.nz site
1022 
1023  // As you can see we obtain the correct stress tensor only by using the factor 0.5 onto the off-diagonal elements of the symmetric tensor. \n
1024  // @note So, why do we need the factor 0.5 then? (based on [homepages.engineering.auckland.ac.nz ...])\n
1025  // When using symmetric tensor one has to be aware of the definition of the independent variables. In 3d those are the
1026  // following 6 components: \n
1027  // - \f$ A_{11} \f$
1028  // - \f$ A_{22} \f$
1029  // - \f$ A_{33} \f$
1030  // - \f$ \overline{A_{12}} \f$
1031  // - \f$ \overline{A_{13}} \f$
1032  // - \f$ \overline{A_{23}} \f$ \n
1033  // Here the overlined components denote the averaged values, such that
1034  // - \f$ \overline{A_{12}} = 0.5 \cdot [ A_{12} + A_{21} ] = A_{12} = A_{21} \f$
1035  // - ... \n
1036  // This looks rather boring, because the averaged value of the two identical components (symmetry) is identical to the components.
1037  // But (and that is a crucial BUT), this only holds for the values NOT the derivatives.
1038  // The derivative of a function \f$ \Phi \f$ with respect to a symmetric tensor \a A is
1039  // \f[ \frac{\partial \Phi}{\partial \overline{A_{12}}} = \frac{\partial \Phi}{\partial A_{12}} \cdot \frac{\partial A_{12}}{\partial \overline{A_{12}}}
1040  // + \frac{\partial \Phi}{\partial A_{21}} \cdot \frac{\partial A_{21}}{\partial \overline{A_{21}}}
1041  // = \frac{\partial \Phi}{\partial A_{12}} + \frac{\partial \Phi}{\partial A_{21}}
1042  // = 2 \cdot \frac{\partial \Phi}{\partial A_{12}} \f]
1043  // Note how the derivatives with respect to the actual tensor components (here 12 and 21) are identical. \n
1044  // However, our derivatives (computed via Sacado) were calculated with respect to the actually independent
1045  // variables (overlined). Still, in the tensor with the derivatives we want the derivatives with respect to the normal components (not overlined). \n
1046  // Summary: \n
1047  // When you compute derivatives with respect to a symmetric tensor, you have to scale the off-diagonal elements by 0.5 to account for the fact that you actually work with
1048  // the averaged values. \n
1049  // As a consequence, we use the factor 0.5 for all off-diagonal components of derivatives with respect to symmetric tensors. For second derivatives with respect to
1050  // symmetric tensors the factors 0.5 and 0.25 come into play.
1051 
1052 }
Sacado::Fad::DFad< double > fad_double
Definition: Sacado-auxiliary_functions.h:7

◆ sacado_test_scalar()

void sacado_test_scalar ( )

Referenced by main().

44 {
45  std::cout << "Scalar Test:" << std::endl;
46  // Define the variables used in the computation (inputs/independent variables: a, b; output/result: c; auxiliaries/passive variables: *) as the Sacado-data type
47  fad_double a,b,c;
48  // Initialize the input variables a and b; This (a,b) = (1,2) will be the point where the derivatives are computed.
49  // Compare: y=x² -> (dy/dx)(\@x=1) = 2. We can only compute the derivative numerically at a certain point.
50  a = 1;
51  b = 2;
52 
53  a.diff(0,2); // Set a to be dof 0, in a 2-dof system.
54  b.diff(1,2); // Set b to be dof 1, in a 2-dof system.
55  // Our equation here is very simply. But you can use nested equations and many standard mathematical operations, such as sqrt, pow, sin, ...
56  c = 2*a + std::cos(a*b);
57  double *derivs = &c.fastAccessDx(0); // Access the derivatives of
58  // Output the derivatives of c with respect to the two above defined degrees of freedom (dof)
59  std::cout << "Derivatives at the point (" << a << "," << b << ")" << std::endl;
60  std::cout << "dc/da = " << derivs[0] << ", dc/db=" << derivs[1] << std::endl;
61 }
Sacado::Fad::DFad< double > fad_double
Definition: Sacado-auxiliary_functions.h:7

◆ stress_strain_relation()

template<int dim, typename Number >
SymmetricTensor<2,dim,Number> stress_strain_relation ( const SymmetricTensor< 2, dim, Number > &  eps,
const double &  kappa,
const double &  mu 
)

Referenced by sacado_test_10().

1070 {
1071  SymmetricTensor<2,dim,Number> sigma;
1072 
1073  SymmetricTensor<2,dim,Number> stdTensor_I (( unit_symmetric_tensor<dim,Number>()) );
1074 
1075  // Our stress equation is now computed in index notation to simplify the use of the constants and
1076  // especially the use of the \a deviator.
1077  for ( unsigned int i=0; i<dim; ++i)
1078  for ( unsigned int j=0; j<dim; ++j )
1079  sigma[i][j] = kappa * trace(eps) * stdTensor_I[i][j] + 2. * mu * deviator(eps)[i][j];
1080 
1081  return sigma;
1082 }