ln_space
mainpage.h
Go to the documentation of this file.
1 /**
2 
3 @{
4 
5 \brief Implementation of transformation into the logarithmic strain space in deal.ii
6 
7 \author jfriedlein
8 
9 @tableofcontents
10 
11 @mainpage Transformation into the logarithmic strain space
12 
13 @section intro Introduction
14 @todo refer to papers by Miehe
15 
16 
17 @subsection subsec_overview Overview
18 This overview shall give you a first impression what to expect ...
19 
20 
21 @subsection subsec_interface Interface - How to incorporate the transformation into your code
22 @todo add a simple example code that calls the pre and post with e.g. an elastic matmod as coding example in section code
23 
24 
25 @subsection subsec_more_basics Some more basics
26 
27 
28 
29 @subsection subsec_resources Some resources/links
30 
31 
32 
33 @section code The commented program
34 
35 \code
36 #ifndef ln_space_H
37 #define ln_space_H
38 
39 \endcode
40 @section includes Include Files
41 The data type SymmetricTensor and some related operations, such as trace, symmetrize, deviator, ... for tensor calculus
42 \code
43 #include <deal.II/base/symmetric_tensor.h>
44 #include <deal.II/base/exceptions.h>
45 
46 \endcode
47 @todo Check whether the following three headers are needed at all
48 \code
49 #include <iostream>
50 #include <fstream>
51 #include <cmath>
52 
53 #include "functions.h"
54 
55 using namespace dealii;
56 
57 namespace ln_space
58 {
59 // template<int dim>
60 // void transform ( /*input->*/ Tensor<2, dim> &F, double &alpha_n, SymmetricTensor<2,dim> &eps_p_n, void (*func_pointer)(auto),
61 // /*output->*/ SymmetricTensor<2,dim> &stress_S, SymmetricTensor<4,dim> &C, SymmetricTensor<4,dim> &Lambda, double &stress_vM )
62 // {
63 // Vector<double> eigenvalues(dim);
64 // std::vector< Tensor<1, dim> > eigenvector(dim);
65 // std::vector< SymmetricTensor<2, dim> > eigenbasis(dim);
66 // Vector<double> ea(dim);
67 // Vector<double> da(dim);
68 // Vector<double> fa(dim);
69 // SymmetricTensor<2, dim> hencky_strain;
70 \endcode
71 
72 \code
73 // pre_ln ( /*input->*/ F,
74 // /*output->*/ hencky_strain, ea, da, fa, eigenvector, eigenvalues, eigenbasis );
75 \endcode
76 
77 \code
78 // // We only create this variable to emphasise the difference between the stress \a T from the
79 // // small strain material modell and the 2nd Piola Kirchhoff stress \a S transformed back by the post processing
80 // SymmetricTensor<2,dim> T_stress;
81 \endcode
82 
83 \code
84 // func_pointer( /*input->*/ hencky_strain, alpha_n, eps_p_n, /*output->*/ T_stress, stress_vM, C, Lambda );
85 \endcode
86 
87 \code
88 // // ToDo: We also have to transform Lambda, stress_vM
89 \endcode
90 
91 \code
92 // // also transforms the T_stress to the 2nd Piola-Kirchhoff stress
93 // post_ln ( /*input->*/ ea, da, fa, eigenvalues, eigenbasis,
94 // /*output->*/ T_stress, C );
95 \endcode
96 
97 \code
98 // stress_S = T_stress;
99 // }
100 
101 
102  template<int dim>
103  void pre_ln ( /*input->*/ Tensor<2, dim> &F,
104  /*output->*/ SymmetricTensor<2,dim> &hencky_strain, Vector<double> &ea, Vector<double> &da, Vector<double> &fa,
105  std::vector<Tensor<1,dim> > &eigenvector, Vector<double> &eigenvalues, std::vector< SymmetricTensor<2,dim> > &eigenbasis )
106  {
107 \endcode
108 Following "Algorithms for computation of stresses and elasticity moduli in terms of Seth–Hill’s family of generalized strain tensors" by Miehe&Lambrecht \n
109 Table I. Algorithm A
110 \code
111  /*
112  * 1. Eigenvalues, eigenvalue bases and diagonal functions:
113  */
114 
115 \endcode
116 Get the symmetric right cauchy green tensor
117 \code
118  SymmetricTensor<2, dim> right_cauchy_green_sym = symmetrize( transpose(F) * F);//Physics::Elasticity::Kinematics::C(F);
119 
120 \endcode
121 Compute Eigenvalues, Eigenvectors and Eigenbasis
122 \code
123  {
124 \endcode
125 Get Eigenvalues and Eigenvectors from the deal.ii function \a eigenvectors(*)
126 \code
127  for (unsigned int i = 0; i < dim; ++i) {
128  eigenvalues[i] = eigenvectors(right_cauchy_green_sym)[i].first;
129  eigenvector[i] = eigenvectors(right_cauchy_green_sym)[i].second;
130  }
131 
132 \endcode
133 Check if the found eigenvectors are perpendicular to each other
134 \code
135  if ((std::fabs(eigenvalues(0) - 1) > 1e-10)
136  && (std::fabs(eigenvalues(1) - 1) > 1e-10)
137  && (std::fabs(eigenvalues(2) - 1) > 1e-10)) {
138  for (unsigned int i = 0; i < dim; ++i) {
139  for (unsigned int j = i + 1; j < dim; ++j) {
140  AssertThrow( (std::fabs(eigenvector[i] * eigenvector[j]) < 1e-12),
141  ExcMessage("ln-space<< Eigenvectors are not perpendicular to each other.") );
142  }
143  }
144  }
145 
146 \endcode
147 Compute eigenbasis Ma: eigenbasis = eigenvector \otimes eigenvector
148 \code
149  for (unsigned int i = 0; i < dim; ++i) {
150  eigenbasis[i] = symmetrize( outer_product(eigenvector[i], eigenvector[i]) );
151  AssertThrow( eigenvalues(i) >= 0.0,
152  ExcMessage("ln-space<< Eigenvalue is negativ. Check update_qph.") );
153  }
154  }
155 
156 \endcode
157 Compute diagonal function \a ea and its first and second derivate \a da and \a fa \n
158 \code
159  for (unsigned int i = 0; i < dim; ++i)
160  {
161  ea(i) = 0.5 * std::log( std::abs(eigenvalues(i)) ); // diagonal function
162  da(i) = std::pow(eigenvalues(i), -1.0); // first derivative of diagonal function ea
163  fa(i) = -2.0 * std::pow(eigenvalues(i), -2.0); // second derivative of diagonal function ea
164  AssertThrow( ea(i) == ea(i),
165  ExcMessage( "ln-space<< Ea is nan due to logarithm of negativ eigenvalue. Check update_qph.") );
166  AssertThrow( da(i) > 0.0,
167  ExcMessage( "ln-space<< First derivative da of diagonal function is "+std::to_string(da(i))+" < 0.0 . Check update_qph.") );
168  }
169 
170 \endcode
171 Compute the Hencky strain
172 \code
173  for (unsigned int a = 0; a < dim; ++a)
174  hencky_strain += ea(a) * eigenbasis[a];
175 
176 \endcode
177 Output-> SymmetricTensor<2, dim> hencky_strain, Vector<double> ea, da, fa,
178 \code
179  // std::vector<Tensor<1, dim>> eigenvector, Vector<double> eigenvalues, std::vector< SymmetricTensor<2, dim> > eigenbasis
180  }
181 
182 
183  template<int dim>
184  void post_ln ( /*input->*/ Vector<double> &ea, Vector<double> &da, Vector<double> &fa,
185  Vector<double> &eigenvalues, std::vector< SymmetricTensor<2,dim> > &eigenbasis,
186  /*output->*/ SymmetricTensor<2,dim> &second_piola_stress_S, SymmetricTensor<4,dim> &elasto_plastic_tangent )
187  {
188  const double comp_tolerance = 1e-8;
189  SymmetricTensor<2,dim> stress_measure_T_sym = second_piola_stress_S; // the output argument is abused as an input argument
190 
191  /*
192  * 3. Set up coefficients \a theta, \a xi and \a eta
193  */
194 
195 \endcode
196 Compute the coefficients based on the eigenvalues, eigenvectors and ea,da,fa
197 \code
198  Tensor<2, dim> theta;
199  Tensor<2, dim> xi;
200  double eta = 999999999.0;
201 
202 \endcode
203 For three different eigenvalues \f$ \lambda_a \neq \lambda_b \neq \lambda_c \f$
204 \code
205  if (
206  ( !(std::fabs(eigenvalues(0) - eigenvalues(1)) < comp_tolerance) )
207  &&
208  ( !(std::fabs(eigenvalues(0) - eigenvalues(2)) < comp_tolerance) )
209  &&
210  ( !(std::fabs(eigenvalues(1) - eigenvalues(2)) < comp_tolerance) )
211  )
212  {
213  eta = 0.0;
214  for (unsigned int a = 0; a < dim; ++a)
215  for (unsigned int b = 0; b < dim; ++b)
216  if (a != b)
217  {
218  theta[a][b] = (ea(a) - ea(b))
219  / (eigenvalues(a) - eigenvalues(b));
220  xi[a][b] = (theta[a][b] - 0.5 * da(b))
221  / (eigenvalues(a) - eigenvalues(b));
222 
223  for (unsigned int c = 0; c < dim; ++c)
224  if ((c != a) && (c != b))
225  {
226  eta +=
227  ea(a)
228  / (2.0
229  * (eigenvalues(a)
230  - eigenvalues(b))
231  * (eigenvalues(a)
232  - eigenvalues(c)));
233  }
234  }
235  }
236  // For three equal eigenvalues \f$ \lambda_a = \lambda_b = \lambda_c \f$
237  else if ( (std::fabs(eigenvalues(0) - eigenvalues(1)) < comp_tolerance)
238  &&
239  (std::fabs(eigenvalues(1) - eigenvalues(2)) < comp_tolerance) )
240  {
241  eta = 0.0;
242  for (unsigned int a = 0; a < dim; ++a)
243  {
244  for (unsigned int b = 0; b < dim; ++b)
245  if (a != b)
246  {
247  theta[a][b] = 0.5 * da(0);
248  xi[a][b] = (1.0 / 8.0) * fa(0);
249  }
250  }
251  eta = (1.0 / 8.0) * fa(0);
252  }
253 
254 \endcode
255 For two equal eigenvalues a and b: \f$ \lambda_a = \lambda_b \neq \lambda_c \f$
256 \code
257  else if ( (std::fabs(eigenvalues(0) - eigenvalues(1)) < comp_tolerance)
258  &&
259  ( !(std::fabs(eigenvalues(1) - eigenvalues(2)) < comp_tolerance) ) )
260  {
261  eta = 0.0;
262  for (unsigned int a = 0; a < dim; ++a)
263  for (unsigned int b = 0; b < dim; ++b)
264  if ((a != b) && ((a == 2) || (b == 2)))
265  {
266  theta[a][b] = (ea(a) - ea(b))
267  / (eigenvalues(a) - eigenvalues(b));
268  xi[a][b] = (theta[a][b] - 0.5 * da(b))
269  / (eigenvalues(a) - eigenvalues(b));
270  }
271 
272  theta[0][1] = 0.5 * da(0);
273  theta[1][0] = theta[0][1];
274  xi[0][1] = (1.0 / 8.0) * fa(0);
275  xi[1][0] = xi[0][1];
276  eta = xi[2][0];
277  }
278 \endcode
279 For two equal eigenvalues a and c: \f$ \lambda_a = \lambda_c \neq \lambda_b \f$
280 \code
281  else if ( (std::fabs(eigenvalues(0) - eigenvalues(2)) < comp_tolerance)
282  &&
283  (!(std::fabs(eigenvalues(1) - eigenvalues(2)) < comp_tolerance)) )
284  {
285  eta = 0.0;
286  for (unsigned int a = 0; a < dim; ++a)
287  for (unsigned int b = 0; b < dim; ++b)
288  if ( (a != b) && ((a == 1) || (b == 1)) )
289  {
290  theta[a][b] = (ea(a) - ea(b))
291  / (eigenvalues(a) - eigenvalues(b));
292  xi[a][b] = (theta[a][b] - 0.5 * da(b))
293  / (eigenvalues(a) - eigenvalues(b));
294  }
295 
296  theta[0][2] = 0.5 * da(0);
297  theta[2][0] = theta[0][2];
298  xi[0][2] = (1.0 / 8.0) * fa(0);
299  xi[2][0] = xi[0][2];
300  eta = xi[1][0];
301  }
302 \endcode
303 For two equal eigenvalues b and c: \f$ \lambda_b = \lambda_c \neq \lambda_a \f$
304 \code
305  else if ( (std::fabs(eigenvalues(1) - eigenvalues(2)) < comp_tolerance)
306  &&
307  (!(std::fabs(eigenvalues(0) - eigenvalues(1)) < comp_tolerance)) )
308  {
309  eta = 0.0;
310  for (unsigned int a = 0; a < dim; ++a)
311  for (unsigned int b = 0; b < dim; ++b)
312  if ( (a != b) && ((a == 0) || (b == 0)) )
313  {
314  theta[a][b] = (ea(a) - ea(b))
315  / (eigenvalues(a) - eigenvalues(b));
316  xi[a][b] = (theta[a][b] - 0.5 * da(b))
317  / (eigenvalues(a) - eigenvalues(b));
318  }
319 
320  theta[1][2] = 0.5 * da(1);
321  theta[2][1] = theta[1][2];
322  xi[1][2] = (1.0 / 8.0) * fa(1);
323  xi[2][1] = xi[1][2];
324  eta = xi[0][1];
325  }
326  else
327  {
328  deallog << "ln-space<< eigenvalues:0: " << eigenvalues[0] << std::endl;
329  deallog << "ln-space<< eigenvalues:1: " << eigenvalues[1] << std::endl;
330  deallog << "ln-space<< eigenvalues:2: " << eigenvalues[2] << std::endl;
331  AssertThrow( false,
332  ExcMessage("ln-space<< Eigenvalue case not possible, check update_qph!") );
333  }
334 
335 \endcode
336 Ensure that \a eta was initialised in one of the cases
337 \code
338  AssertThrow( (eta < 9999999), ExcMessage("Eta in update_qph not initialised") );
339 
340 
341  /*
342  * 4. Lagrangian stresses and elasticity moduli
343  */
344 
345 \endcode
346 Compute projection tensor P
347 \code
348  Tensor<4, dim> projection_tensor_P;
349  for (unsigned int a = 0; a < dim; ++a)
350  {
351  projection_tensor_P += da(a) * (Tensor<4,dim> ) outer_product(eigenbasis[a],eigenbasis[a]);
352  for (unsigned int b = 0; b < dim; ++b)
353  if (b != a)
354  projection_tensor_P += theta[a][b] * get_tensor_operator_G(eigenbasis[a],eigenbasis[b]);
355  }
356 
357 \endcode
358 Check whether the projecton tensor is symmetric and store it into a \a SymmetricTensor
359 \code
360  AssertThrow( symmetry_check(projection_tensor_P), ExcMessage( "ln-space<< Projection tensor P is not symmetric") );
361  SymmetricTensor<4,dim> projection_tensor_P_sym = symmetrize(projection_tensor_P);
362 
363 \endcode
364 Compute the double contraction of T and L
365 \code
366  Tensor<4, dim> projection_tensor_T_doublecon_L;
367  for (unsigned int a = 0; a < dim; ++a)
368  {
369  projection_tensor_T_doublecon_L += fa(a)
370  * (stress_measure_T_sym * eigenbasis[a])
371  * (Tensor<4, dim> ) (outer_product(eigenbasis[a], eigenbasis[a]));
372  for (unsigned int b = 0; b < dim; ++b)
373  if (b != a)
374  {
375  projection_tensor_T_doublecon_L += 2.0 * xi[a][b]
376  * (
377  get_tensor_operator_F_right( eigenbasis[a], eigenbasis[b], eigenbasis[b], stress_measure_T_sym )
378  + get_tensor_operator_F_left( eigenbasis[a], eigenbasis[b], eigenbasis[b], stress_measure_T_sym )
379  + get_tensor_operator_F_right( eigenbasis[b], eigenbasis[b], eigenbasis[a], stress_measure_T_sym )
380  + get_tensor_operator_F_left( eigenbasis[b], eigenbasis[b], eigenbasis[a], stress_measure_T_sym )
381  + get_tensor_operator_F_right( eigenbasis[b], eigenbasis[a], eigenbasis[b], stress_measure_T_sym )
382  + get_tensor_operator_F_left( eigenbasis[b], eigenbasis[a], eigenbasis[b], stress_measure_T_sym )
383  );
384 
385  for (unsigned int c = 0; c < dim; ++c)
386  if ( (c != a) && (c != b) )
387  {
388  projection_tensor_T_doublecon_L += 2.0 * eta
389  * (
390  get_tensor_operator_F_right( eigenbasis[a], eigenbasis[b], eigenbasis[c], stress_measure_T_sym )
391  + get_tensor_operator_F_left( eigenbasis[b], eigenbasis[c], eigenbasis[a], stress_measure_T_sym )
392  );
393  }
394  }
395  }
396 
397 \endcode
398 Check whether the tensor is symmetric and store it into a \a SymmetricTensor
399 \code
400  AssertThrow( symmetry_check(projection_tensor_T_doublecon_L),
401  ExcMessage("ln-space<< Projection tensor T:L is not symmetric") );
402  SymmetricTensor<4,dim> projection_tensor_T_doublecon_L_sym = symmetrize(projection_tensor_T_doublecon_L);
403 
404 \endcode
405 Compute the retransformed values
406 \code
407  second_piola_stress_S = stress_measure_T_sym * projection_tensor_P_sym;
408 
409  elasto_plastic_tangent = projection_tensor_P_sym * elasto_plastic_tangent * projection_tensor_P_sym // Note: we work on the input argument \a elasto_plastic_tangent
410  + projection_tensor_T_doublecon_L_sym;
411  }
412 }
413 
414 
415 #endif // ln_space_H
416 \endcode
417 
418 @section END The End
419 
420 Hosted via GitHub according to https://goseeky.wordpress.com/2017/07/22/documentation-101-doxygen-with-github-pages/ \n
421 Design of the documentation inspired by the deal.ii tutorial programs.
422 
423 @}
424 */
bool symmetry_check(Tensor< 2, dim > &tensor)
Definition: functions.h:163
Tensor< 4, dim > get_tensor_operator_F_right(const SymmetricTensor< 2, dim > &Ma, const SymmetricTensor< 2, dim > &Mb, const SymmetricTensor< 2, dim > &Mc, const SymmetricTensor< 2, dim > &T)
Definition: functions.h:53
Tensor< 4, dim > get_tensor_operator_G(const SymmetricTensor< 2, dim > &Ma, const SymmetricTensor< 2, dim > &Mb)
Definition: functions.h:33
Tensor< 4, dim > get_tensor_operator_F_left(const SymmetricTensor< 2, dim > &Ma, const SymmetricTensor< 2, dim > &Mb, const SymmetricTensor< 2, dim > &Mc, const SymmetricTensor< 2, dim > &T)
Definition: functions.h:79
SymmetricTensor< 4, dim > symmetrize(const Tensor< 4, dim > &tensor)
Definition: functions.h:209